Circles
 Chapter Overview and Pacing

An electronic version of this chapter is available on StudentWorks ${ }^{T M}$. This backpack solution CD-ROM allows students instant access to the Student Edition, lesson worksheet pages, and web resources.

Timesaving Tools

 eacherWorks
Chapter Resource Manager

All-In-One Planner and Resource Center

See pages T5 and T21.

CHAPTER 10 RESOURCE MASTERS										
541-542	543-544	545	546		$\begin{gathered} 11-12,23-24, \\ 45-48 \end{gathered}$	SC 19	10-1	10-1		
547-548	549-550	551	552	603	$\begin{gathered} 31-32,61-64, \\ 67-68,71-72, \\ 105-106, \\ 109-110 \end{gathered}$		10-2	10-2		compass, protractor
553-554	555-556	557	558				10-3	10-3		compass, patty paper, centimeter ruler, scissors, protractor
559-560	561-562	563	564	603, 605	41-42		10-4	10-4		compass, protractor, straightedge
565-566	567-568	569	570		15-16	$\begin{gathered} \text { GCC } 35,36 \\ \text { SC } 20 \end{gathered}$	10-5	10-5		compass, straightedge (Follow-Up: straightedge, compass, paper)
571-572	573-574	575	576	604	17-18		10-6	10-6		compass, straightedge
577-578	579-580	581	582		$\begin{aligned} & \hline 35-36, \\ & 51-52 \end{aligned}$		10-7	10-7		compass, straightedge
583-584	585-586	587	588	604			10-8	10-8	19	grid paper, compass, straightedge
				$\begin{aligned} & \text { 589-602, } \\ & 606-608 \end{aligned}$						

[^0]
Continuity of Instruction

Prior Knowledge

Students solved equations for a variable and used the Quadratic Formula in previous courses. In Chapter 4, students found the measures of the angles in isosceles triangles. In Chapter 7, they found the missing side length in a right triangle and used the converse of the Pythagorean Theorem to determine whether figures were right triangles.

This Chapter

This chapter focuses exclusively on circles and their special properties. A circle is a unique geometric shape in which the angles, arcs, and segments intersecting that circle have special relationships. In this chapter, students identify the parts of a circle and solve problems involving circumference. They find arc and angle measures and the measures of segments in a circle. In addition, students write the equation of a circle and graph circles in the coordinate plane.

Future Connections

Students will use their knowledge of circles to find the area of a circle in Chapter 11. They will also need to understand a circle to understand a sphere, which is introduced in Chapter 12.

Circles and Circumference

A circle is the locus of all points in a plane equidistant from a given point, which is the center of the circle. A circle is usually named by its center point. Any segment with endpoints on the circle is a chord of the circle. A chord that contains the center of the circle is a diameter of the circle. Any segment with endpoints that are the center and a point on the circle is a radius. All radii of a circle are congruent and all diameters are congruent.

The circumference of a circle is the distance around the circle. The ratio of the circumference to the diameter of a circle is always equal to π. For a circumference of C units and a diameter of d units or a radius of r units, $C=\pi d$ or $C=2 \pi r$.

Angles and Arcs

A central angle of a circle has the center of the circle as its vertex, and its sides are two radii of the circle. The sum of the measures of the central angles of a circle with no interior points in common is 360. A central angle separates the circle into two parts, each of which is an arc.

The measure of each arc is related to the measure of its central angle. A minor arc degree measure equals the measure of the central angle and is less than 180. A major arc degree measure equals 360 minus the measure of the minor arc and is greater than 180. A semicircle is also considered an arc and measures 180°. In the same or in congruent circles, two arcs are congruent if and only if their corresponding central angles are congruent.

In a circle graph, the central angles divide a circle into wedges, often expressed as percents. The size of the angle is proportional to the percent. By multiplying the percent by 360, you can determine the measure of the central angle. Another way to measure an arc is by its length. An arc is part of the circle, so the length of an arc is part of the circumference. The ratio of the arc degree measure to 360 is equal to the ratio of the arc length to the circumference. You can use these ratios to solve for arc length.

10-3 Arcs and Chords

The endpoints of a chord are also endpoints of an arc. Arcs and chords have a special relationship. In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. In a circle or congruent circles, two chords are congruent if and only if they are equidistant from the center of the circle.

The chords of adjacent arcs can form a polygon Such a polygon is said to be inscribed in the circle because all its vertices lie on the circle. The circle circumscribes the polygon.

Diameters that are perpendicular to chords create special segment and arc relationships. In a circle, if a diameter or radius is perpendicular to a chord, then it bisects the chord and its arc.

10-4 Inscribed Angles

An inscribed angle is an angle that has its vertex on the circle and its sides contained in chords of the circle. If an angle is inscribed in a circle, then the measure of the angle equals one-half of the measure of its intercepted arc (or the measure of the intercepted arc is twice the measure of the inscribed angle). If two inscribed angles of a circle (or congruent circles) intercept congruent arcs or the same arc, then the angles are congruent.

Inscribed polygons also have special properties. An inscribed triangle with a side that is a diameter is a special type of triangle. If an inscribed angle intercepts a semicircle, the angle is a right angle. If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

10-5 Tangents

A tangent intersects a circle in exactly one point. This point is called the point of tangency. If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency. The converse of that statement is also true: If a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.

More than one line can be tangent to the same circle. If two segments from the same exterior point are tangent to a circle, then they are congruent.

Circles can be inscribed in polygons, just as polygons can be inscribed in circles. If a circle is inscribed in a polygon, then every side of the polygon is tangent to the circle. You can use what you know about tangents to solve problems involving inscribed circles.

10-6 Secants, Tangents, and Angle Measures

A line that intersects a circle in exactly two points is called a secant. When two secants intersect inside a circle, the angles formed are related to the arcs they intercept. If two secants intersect in the interior of a circle, then the measure of an angle formed is one-half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

A secant can also intersect a tangent at the point of tangency. If this occurs, then the measure of each angle formed is one-half the measure of its intercepted arc.

Secants and tangents can intersect outside a circle as well. If two secants, a tangent and a secant, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

10-7 Special Segments in a Circle

If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal. You can also use intersecting chords to measure arcs.

If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment. This product can also be used if a tangent segment and a secant segment are drawn to a circle from an exterior point. In this case, the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment.

10-2 Equations of Circles

An equation for a circle with center at (h, k) and radius of r units is $(x-h)^{2}+(y-k)^{2}=r^{2}$. You can analyze the equation of a circle to find information that will help you graph the circle on a coordinate plane. Once you know the coordinates of the center and the radius of a circle, you can graph the circle. In fact, if you know just three points on a circle, you can graph it and write its equation. By graphing the points as a triangle and constructing two perpendicular bisectors, you can locate the center of the circle. Then you can use the Distance Formula to calculate the radius. Finally, write an equation for the circle.

	Type	Student Edition	Teacher Resources	Technology/Internet
	Ongoing	```Prerequisite Skills, pp. 521, 528, 535, 543, 551, 558, 568, 574 Practice Quiz 1, p. 543 Practice Quiz 2, p. 568```	5-Minute Check Transparencies Prerequisite Skills Workbook, pp. 11-12, 15-18, $23-24,31-32,35-36,41-42,45-48,51-52,$ $61-64,67-68,71-72,105-106,109-110$ Quizzes, CRM pp. 603-604 Mid-Chapter Test, CRM p. 605 Study Guide and Intervention, CRM pp. 541-542, $\begin{aligned} & 547-548,553-554,559-560,565-566, \\ & 571-572,577-578,583-584 \end{aligned}$	GeomPASS: Tutorial Plus, Lesson 19 www.geometryonline.com/ self_check_quiz www.geometryonline.com/ extra_examples
	Mixed Review	$\begin{aligned} & \text { pp. 528, 535, 543, 551, 558, } \\ & 568,574,580 \end{aligned}$	Cumulative Review, CRM p. 606	
	Error Analysis	Find the Error, pp. 539, 571 Common Misconceptions, p. 555	Find the Error, TWE pp. 539, 571 Unlocking Misconceptions, TWE p. 532 Tips for New Teachers, TWE pp. 524, 562	
	Standardized Test Practice	$\begin{aligned} & \text { pp. } 525,526,528,535,543, \\ & 551,558,567,574,580,587, \\ & 588,589 \end{aligned}$	TWE pp. 588-589 Standardized Test Practice, CRM pp. 607-608	Standardized Test Practice CD-ROM www.geometryonline.com/ standardized_test
	Open-Ended Assessment	Writing in Math, pp. 527, 534, 542, 551, 558, 567, 574, 579 Open Ended, pp. 525, 532, 539, 548, 555, 564, 572, 577 Standardized Test, p. 589	Modeling: TWE pp. 551, 574 Speaking: TWE pp. 528, 568, 580 Writing: TWE pp. 535, 543, 558 Open-Ended Assessment, CRM p. 601	
	Chapter Assessment	Study Guide, pp. 581-586 Practice Test, p. 587	Multiple-Choice Tests (Forms 1, 2A, 2B), CRM pp. 589-594 Free-Response Tests (Forms 2C, 2D, 3), CRM pp. 595-600 Vocabulary Test/Review, CRM p. 602	ExamView ${ }^{\otimes}$ Pro (see below) MindJogger Videoquizzes www.geometryonline.com/ vocabulary_review www.geometryonline.com/ chapter_test

For more information on Yearly ProgressPro, see p. 400.

Geometry Lesson	Yearly ProgressPro Skill Lesson
$10-1$	Circles
$10-2$	Angles and Arcs
$10-3$	Arcs and Chords
$10-4$	Inscribed Angles
$10-5$	Tangents
$10-6$	Secants, Tangents, and Angle Measures
$10-7$	Special Segments in a Circle
$10-8$	Equations of Circles

ExamView ${ }^{\circledR}$ Pro

Use the networkable ExamView ${ }^{\otimes}$ Pro to:

- Create multiple versions of tests.
- Create modified tests for Inclusion students.
- Edit existing questions and add your own questions.
- Use built-in state curriculum correlations to create tests aligned with state standards.
- Apply art to your test from a program bank of artwork.

For more information on Intervention and Assessment, see pp. T8-T11.

Reading and Writing in Mathematics

Glencoe Geometry provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 521
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 525, 532, 539, 548, 555, 564, 571, 577)
- Writing in Math questions in every lesson, pp. 527, 534, 542, 551, 558, 567, 574, 579
- Reading Study Tip, pp. 522, 536
- WebQuest, pp. 527, 580

Teacher Wraparound Edition

- Foldables Study Organizer, pp. 521, 581
- Study Notebook suggestions, pp. 526, 533, 539, 548, 556, 560, 564, 571, 577
- Modeling activities, pp. 551, 574
- Speaking activities, pp. 528, 568, 580
- Writing activities, pp. 535, 543, 558
- Differentiated Instruction (Verbal/Linguistic), p. 525
- ELL Resources, pp. 520, 525, 527, 534, 541, 550, 557, 565, 573, 579, 581

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 10 Resource Masters, pp. vii-viii)
- Proof Builder helps students learn and understand theorems and postulates from the chapter. (Chapter 10 Resource Masters, pp. ix-x)
- Reading to Learn Mathematics master for each lesson (Chapter 10 Resource Masters, pp. 545, 551, 557, 563, $569,575,581,587)$
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading Strategies for the Mathematics Classroom
- WebQuest and Project Resources

For more information on Reading and Writing in Mathematics, see pp. T6-T7.

What You'll Learn

Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

Lesson	NCTM Standards	Local Objectives
$10-1$	$3,4,6,8,9,10$	
$10-2$	$3,6,8,9,10$	
$10-3$	$3,4,6,8,9,10$	
$10-4$	$3,6,8,9,10$	
$10-5$	$3,6,8,9,10$	
$10-4$ and $10-5$ Follow-Up	3,6	
$10-6$	$3,6,8,9,10$	
$10-7$	$3,4,6,8,9,10$	
$10-8$	$3,4,6,8,9,10$	

Key to NCTM Standards:

1=Number \& Operations, 2=Algebra,

3=Geometry, 4=Measurement,
5=Data Analysis \& Probability, 6=Problem
Solving, 7=Reasoning \& Proof,
8=Communication, 9=Connections,
10=Representation

What You'll Learn

- Lessons 10-1 Identify parts of a circle and solve problems involving circumference.
- Lessons 10-2, 10-3, 10-4, and 10-6 Find arc and angle measures in a circle.
- Lessons 10-5 and 10-7 Find measures of segments in a circle.
- Lesson 10-8 Write the equation of a circle.

Why It's Important

A circle is a unique geometric shape in which the angles, arcs, and segments intersecting that circle have special relationships. You can use a circle to describe a safety zone for fireworks, a location on Earth seen from space, and even a rainbow. You will learn about angles of a circle when satellites send signals to Earth in Lesson 10-6.

Vocabulary Builder

ELL
The Key Vocabulary list introduces students to some of the main vocabulary terms included in this chapter. For a more thorough vocabulary list with pronunciations of new words, give students the Vocabulary Builder worksheets found on pages vii and viii of the Chapter 10 Resource Masters. Encourage them to complete the definition of each term as they progress through the chapter. You may suggest that they add these sheets to their study notebooks for future reference when studying for the Chapter 10 test.

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 10 .

For Lesson 10-1

Solve Equations
Solve each equation for the given variable. (For review, see pages 737 and 738 .)

1. $\frac{4}{9} p=72$ for $p 162$
2. $6.3 p=15.752 .5$
3. $3 x+12=8 x$ for $x 2.4$
4. $7(x+2)=3(x-6)-8$
5. $C=2 p r$ for $r r=\frac{C}{2 p}$
6. $r=\frac{C}{6.28}$ for $C \quad C=6.28 r$

For Lesson 10-5

Pythagorean Theorem
Find x. Round to the nearest tenth if necessary. (For review, see Lesson 7-2.)
7.

15

8
9.

17.0

Quadratic Formula
For Lesson 10-7
Solve each equation by using the Quadratic Formula. Round to the nearest tenth.
10. $x^{2}-4 x=105.7,-1.7$
11. $3 x^{2}-2 x-4=01.5,-0.9$
12. $x^{2}=x+154.4,-3.4$
13. $2 x^{2}+x=152.5,-3$

FOLDABLES

 Study OrganizerCircles Make this Foldable to help you organize your notes. Begin with five sheets of plain $8 \frac{1}{2}{ }^{\prime \prime}$ by 11 paper, and cut out five large circles that are the same size.

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 10. Page references are included for additional student help.
Additional review is provided in the Prerequisite Skills Workbook, pages 11-12, 15-18, 23-24, 31-32, 35-36, 41-42, 45-48, 51-52, 61-64, 67-68, 71-72, 105-106, 109-110.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Skill
$10-2$	Angle Addition, p. 528
$10-3$	Isosceles Triangles, p. 535
$10-4$	Solving Equations, p. 543
$10-5$	Pythagorean Theorem, p. 551
$10-6$	Solving Equations, p. 558
$10-7$	Solving Equations by Factoring, p. 568
$10-8$	Distance Formula, p. 574

Step 1 Fold and Cut

Fold two of the circles in half and cut one-inch slits at each end of the folds.

Step 3 Slide

Slide the two circles with slits on the ends through the large slit of the other circles.

Reading and Writing As you read and study each lesson, take notes and record concepts on the appropriate page of your Foldable.

Fold to make a booklet. Label the cover with the title of the chapter and each sheet with a each sheet with
lesson number.

Step 2 Fold and Cut

Fold the remaining three circles in half and cut a slit in the middle of the fold.

Step 4 Label

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Organization of Data and Expository Writing Use this Foldable for student writing about circles, angles, arcs, chords, tangents, secants, angle measurement, and equations. Students can use their Foldable to take notes, define terms, record concepts, use properties, and write and sketch examples. Ask students to write about circles in such a manner that someone who did not know what a circle was or understand how to solve problems using arcs and diameters will understand after reading what students have written.

1 Focus

(5)

5-Minute Check

Transparency 10-1 Use as a quiz or review of Chapter 9 .

Mathematical Background notes are available for this lesson on p. 520C.

How

far does a carousel animal travel in one rotation?

Ask students:

- Explain why an animal travels farther on the outside of the carousel than near the middle of the carousel. The circumference of a circle with a large radius is greater than the circumference of a circle with a smaller radius.
- Are there as many animals on the carousel in Wisconsin as there are degrees in a circle? Explain. No; there are 100 degrees more in a circle than there are animals on the carousel.

10-1 Circles and Circumference

Vocabulary

circle
center
chord
radius
diameter
circumference
pi (π)

Study Tip
Reading
Mathematics The plural of radius is radii, pronounced RAY-dee-eye. The term radius can mean a segment or the measure of that segment. This is also true of the term diameter.

What You'll Learn

- Identify and use parts of circles.
- Solve problems involving the circumference of a circle.

How far does a carousel animal travel in one rotation?

The largest carousel in the world still in operation is located in Spring Green, Wisconsin. It weighs 35 tons and contains 260 animals, none of which is a horse! The rim of the carousel base is a circle. The width, or diameter, of the circle is 80 feet. The distance that one of the animals on the outer edge travels can be determined by special segments in a circle.

PARTS OF CIRCLES A circle is the locus of all points in a plane equidistant from a given point called the center of the circle. A circle is usually named by its center point. The figure below shows circle C, which can be written as $\odot C$. Several special segments in circle C are also shown.

Note that diameter $\overline{B E}$ is made up of collinear radii $\overline{C B}$ and $\overline{C E}$.

Example 1 Identify Parts of a Circle

a. Name the circle.

The circle has its center at K, so it is named circle K, or $\odot K$.

In this textbook, the center of a circle will always be shown in the figure with a dot.
b. Name a radius of the circle.

Five radii are shown: $\overline{K N}, \overline{K O}, \overline{K P}, \overline{K Q}$, and $\overline{K R}$.
c. Name a chord of the circle.

Two chords are shown: $\overline{N O}$ and $\overline{R P}$.
d. Name a diameter of the circle.
$\overline{R P}$ is the only chord that goes through the center, so $\overline{R P}$ is a diameter.

Resource Manager

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 541-542
- Skills Practice, p. 543
- Practice, p. 544
- Reading to Learn Mathematics, p. 545
- Enrichment, p. 546

School-to-Career Masters, p. 19
Prerequisite Skills Workbook, pp. 11-12, 23-24, 45-48
Teaching Geometry With Manipulatives
Masters, p. 161

Transparencies

5-Minute Check Transparency 10-1
Answer Key Transparencies

Technology

Interactive Chalkboard

Radii and Diameters There are an infinite number of radii in each circle. Likewise, there are an infinite number of diameters.

Study Tip

Congruent Circles The circles shown in Example 3 have different radii. They are not congruent circles. For two circles to be congruent circles, they must have congruent radii or congruent diameters.

By the definition of a circle, the distance from the center to any point on the circle is always the same. Therefore, all radii are congruent. A diameter is composed of two radii, so all diameters are congruent. The letters d and r are usually used to represent diameter and radius in formulas. So, $d=2 r$ and $r=\frac{d}{2}$ or $\frac{1}{2} d$.

Example 2 Find Radius and Diameter

Circle A has diameters $\overline{D F}$ and $\overline{P G}$.
a. If $D F=10$, find $D A$.

$$
\begin{array}{ll}
r=\frac{1}{2} d & \text { Formula for radius } \\
r=\frac{1}{2}(10) \text { or } 5 & \\
\text { Substitute and simplify. }
\end{array}
$$

b. If $P A=7$, find $P G$.

2 Teach

PARTS OF CIRCLES

In-Class Examples

Teaching Tip Remind students that a diameter is a special chord of a circle because its endpoints are on the circle.

1

a. Name the circle. $\odot E$
b. Name a radius of the circle. $\overline{E B}, \overline{E A}, \overline{E C}$, or $\overline{E D}$
c. Name a chord of the circle. $\overline{A B}, \overline{A C}, \overline{B D}$, or $\overline{A D}$
d. Name a diameter of the circle. $\overline{A C}$ or $\overline{B D}$

2 Circle R has diameters $\overline{S T}$ and $\overline{Q M}$.

a. If $S T=18$, find $R S .9$
b. If $R M=24$, find $Q M$. 48
c. If $R N=2$, find $R P$. 2

3 The diameters of $\odot X, \odot Y$, and $\odot Z$ are 22 millimeters, 16 millimeters, and 10 millimeters, respectively.

a. Find EZ. 27 mm
b. Find XF. 11 mm

Interactive Chalkboard

PowerPoint ${ }^{\circledR}$
Presentations

This CD-ROM is a customizable Microsoft® PowerPoint $®$ presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Try These exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

In-Class Example

Teaching Tip Tell students that π can also be approximated by $\frac{22}{7}$ if students are using a nonscientific calculator that does not include π on its keyboard.
a. Find C if $r=13$ inches. 26π or $\approx 81.68 \mathrm{in}$.
b. Find C if $d=6$ millimeters. 6π or $\approx 18.85 \mathrm{~mm}$
c. Find d and r to the nearest hundredth if $C=65.4$ feet. $d \approx 20.82 \mathrm{ft} ; r \approx 10.41 \mathrm{ft}$

If students wonder why they are given two formulas for the circumference of a circle when they already know that the diameter is twice the radius, tell them that the two formulas lead them to look closely at a question to determine if the problem gives a radius or a diameter. Explain that a common mistake is to erroneously calculate the circumference of a circle as πr.

Study Tip

Value of π In this book, we will use a calculator to evaluate expressions involving π If no calculator is available, 3.14 is a good estimate for π.

Geometry Activity

Circumference Ratio

A special relationship exists between the circumference of a circle and its diameter.

- Gather Data and Analyze

Collect ten round objects.

1. Measure the circumference and diameter of each object using a millimeter measuring tape. Record the measures in a table like the one at the right. See students' work.
2. Compute the value of $\frac{C}{d}$ to the nearest
hundredth for each object. Record the result in the fourth column of the table. Each ratio should be near 3.1.

Make a Conjecture

3. What seems to be the relationship between the circumference and the diameter of the circle? $C \approx 3.14 \mathrm{~d}$

The Geometry Activity suggests that the circumference of any circle can be found by multiplying the diameter by a number slightly larger than 3 . By definition, the ratio $\frac{C}{d}$ is an irrational number called $\mathbf{p i}$, symbolized by the Greek letter $\boldsymbol{\pi}$. Two formulas for the circumference can be derived using this definition.

$$
\begin{array}{llll}
\frac{C}{d}=\pi & \text { Definition of pi } & C=\pi d \\
C=\pi d & \text { Multiply each side by } d . & C=\pi(2 r) & d=2 r \\
& & C=2 \pi r & \text { Simplify. }
\end{array}
$$

Key Concept

Circumference
For a circumference of C units and a diameter of d units or a radius of r units, $C=\pi d$ or $C=2 \pi r$.

If you know the diameter or radius, you can find the circumference. Likewise, if you know the circumference, you can find the diameter or radius.

Example 4 Find Circumference, Diameter, and Radius

a. Find C if $r=7$ centimeters. b. Find C if $d=12.5$ inches.
$C=2 \pi r \quad$ Circumference formula
$=2 \pi(7) \quad$ Substitution
$=14 \pi$ or about 43.98 cm

$$
\begin{array}{rlrl}
C & =\pi d & \text { Circumference formula } \\
& =\pi(12.5) \quad \text { Substitution } \\
& =12.5 \pi \text { or } 39.27 \mathrm{in} .
\end{array}
$$

c. Find d and r to the nearest hundredth if $C=136.9$ meters.

C	$=\pi d$		Circumference formula	$r=\frac{1}{2} d$	
136.9	$=\pi d$		Substitution		
$\frac{136.9}{\pi}$	$=d$		Divide each side by π.		$\approx \frac{1}{2}(43.58)$
43.58	$\approx d$		$d \approx 43.58$		
d			$\approx 21.79 \mathrm{~m}$		Use a calculator.

Geometry Activity

- You can provide students a handout with a blank 11 -row by 4-column table.
- Ask students why they think they are measuring the objects in millimeters. Students should note that millimeters provide very accurate values for comparison in this activity.
- Point out that the relationship between the circumference and diameter of a circle is an extremely interesting concept that has been analyzed for centuries, and there are many books written just on this subject.

You can also use other geometric figures to help you find the circumference of a circle.

Standardized
Test Practice (A) B C D

Example 5 Use Other Figures to Find Circumference

Multiple-Choice Test Item

Find the exact circumference of $\odot P$.
(A) 13 cm
(B) $12 \pi \mathrm{~cm}$
(C) 40.84 cm
(D) $13 \pi \mathrm{~cm}$

Read the Test Item
You are given a figure that involves a right triangle and a circle. You are asked to find the exact circumference of the circle.

Solve the Test Item

The diameter of the circle is the same as the hypotenuse of the right triangle.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean Theorem } \\
5^{2}+12^{2} & =c^{2} & & \text { Substitution } \\
169 & =c^{2} & & \text { Simplify. } \\
13 & =c & & \text { Take the square root of each side. }
\end{aligned}
$$

So the diameter of the circle is 13 centimeters.
$C=\pi d \quad$ Circumference formula
$C=\pi(13)$ or $13 \pi \quad$ Substitution
Because we want the exact circumference, the answer is D.

Check for Understanding

Notice that the problem sks for an exact answer. since you know that a exact circumference contains π, you can eliminate choices A and C.

1. Describe how the value of π can be calculated. See margin.
2. Write two equations that show how the diameter of a circle is related to the radius of a circle. $d=2 r, r=\frac{1}{2} d$
3. OPEN ENDED Explain why a diameter is the longest chord of a circle. See margin.
Guided Practice
GUIDED PRACTICE KEY Exercises \quad Examples

- 7

8, 9
10-12
13, 14
15
10. $Y Z 5$
11. IX 6
12. IC 20

For Exercises 4-9, refer to the circle at the right. 6. $\overline{A B}, \overline{A C}$, or $\overline{B D}$
4. Name the circle. $\odot E$
5. Name a radius. $\overline{E A}, \overline{E B}, \overline{E C}$, or $\overline{E D}$
6. Name a chord.
7. Name a diameter. $\overline{A C}$ or $\overline{B D}$
8. Suppose $B D=12$ millimeters. Find the radius of the circle. $6 \mathrm{~mm}_{D}$
9. Suppose $C E=5.2$ inches. Find the diameter of the circle. 10.4 in.

Circle W has a radius of 4 units, $\odot Z$ has a radius of 7 units, and $X Y=2$. Find each measure.

2
3
4 5

Find the exact circumference of \odot K. B

A $3 \sqrt{2} \pi$
B 6π
C $6 \sqrt{2} \pi$
D 12π

Answers

1. Sample answer: The value of π is calculated by dividing the circumference of a circle by the diameter.
2. Except for a diameter, two radii and a chord of a circle can form a triangle. The Triangle Inequality Theorem states that the sum of two sides has to be greater than the third. $\mathrm{So}, 2 r$ has to be greater than the measure of any chord that is not a diameter, but $2 r$ is the measure of the diameter. So the diameter has to be longer than any other chord of the circle.

D A \| L Y INIIERVENIION

Differentiated Instruction

ELL
Verbal/Linguistic Have students write about the parts of a circle and its circumference in their own words. They can write a paragraph that explains each vocabulary term and the relationship of the terms to each other, or they can list the terms and write a brief explanation and/or provide an example for each. Students can use these explanations for their study notebooks.

The radius, diameter, or circumference of a circle is given. Find the missing measures. Round to the nearest hundredth if necessary.
13. $r=5 \mathrm{~m}, d=$ $10 \mathrm{~m}, 31.42 \mathrm{~m}$,$C=$? 14. $C=2368 \mathrm{ft}, d=$?,$r=$? $753.76 \mathrm{ft}, 376.88 \mathrm{ft}$
15. Find the exact circumference of the circle. B

> (A) $4.5 \pi \mathrm{~mm}$
> (B) $9 \pi \mathrm{~mm}$
> (C) $18 \pi \mathrm{~mm}$
> (D) $81 \pi \mathrm{~mm}$

\star indicates increased difficulty

Practice and Apply

Homework	Help
For	See
Exerises	Examples
$16-25$	1
$26-31$	2
$32-43$	3
$48-51$	4
52	5
Extra Practice	
See page 773.	

For Exercises 16-20, refer to the circle at the right.
16. Name the circle. $\odot F$
17. Name a radius. $\overline{F A}, \overline{F B}$, or $\overline{F E}$
18. Name a chord. $\overline{B E}$ or $\overline{C D}$
19. Name a diameter. $\overline{B E}$

20. Name a radius not contained in a diameter. $\overline{F A}$

HISTORY For Exercises 21-31, refer to the model of a Conestoga wagon wheel.
21. Name the circle. $\odot R$
$\overline{R T}, \overline{R U}, \overline{R V}, \overline{R W}$,
22. Name a radius of the circle. $\overline{R X}$, or $\overline{R Z}$
23. Name a chord of the circle. $\overline{Z V}, \overline{T X}$, or $\overline{W Z}$
24. Name a diameter of the circle. $\overline{T X}$ or $\overline{W Z}$
25. Name a radius not contained in a diameter. $\overline{R U}, \overline{R V}$
26. Suppose the radius of the circle is 2 feet. Find the diameter. 4 ft

27. The larger wheel of the wagon was often 5 or more feet tall. What is the radius of a 5 -foot wheel? 2.5 ft
28. If $T X=120$ centimeters, find $T R .60 \mathrm{~cm}$
29. If $R Z=32$ inches, find $Z W .64$ in. or 5 ft 4 in.
30. If $U R=18$ inches, find $R V .18$ in.
31. If $X T=1.2$ meters, find $U R .0 .6 \mathrm{~m}$

The diameters of $\odot A, \odot B$, and $\odot C$ are 10,30 , and 10 units, respectively. Find each measure if $\overline{A Z} \cong \overline{C W}$ and $C W=2$.
32. $A Z 2$
33. ZX 3
34. BX 12
35. $B Y 12$
36. YW 3
$\star 37$. AC 34

Circles G, J, and K all intersect at L.
If $G H=10$, find each measure.
38. $F G 10$
39. FH 20
40. GL 10
41. GJ 5
42. JL 5

* 43. JK 2.5

Answer

62. Sample answer: about 251.3 feet. Answers should include the following.

- The distance the animal travels is approximated by the circumference of the circle.
- The diameter for the circle on which the animal is located becomes $80-2$ or 78. The circumference of this circle is 78π. Multiply by 22 to get a total distance of 22(78) or 5391 feet. This is a little over a mile.
$44.14 \mathrm{~mm}, 43.98 \mathrm{~mm}$
$45.13 .4 \mathrm{~cm}, 84.19 \mathrm{~cm}$
$46.26 \mathrm{mi}, 13 \mathrm{mi}$

47. $24.32 \mathrm{~m}, 12.16 \mathrm{~m}$
48. $6 \frac{1}{4} \mathrm{yd}, 39.27 \mathrm{yd}$
49. $13 \frac{1}{2}$ in., 42.41 in.

The radius, diameter, or circumference of a circle is given. Find the missing measures. Round to the nearest hundredth if necessary.
44. $r=7 \mathrm{~mm}, d=$?,$C=$?
45. $d=26.8 \mathrm{~cm}, r=$ \qquad $C=$?
46. $C=26 \pi \mathrm{mi}, d=$ \qquad $\mathrm{C}=$?
48. $d=12 \frac{1}{2} \mathrm{yd}, r=?, \mathrm{C}=$?
47. $C=76.4 \mathrm{~m}, d=$ \qquad $r=$?
50. $d=2 a, r=$ \qquad , $C=$ \qquad a, 6.28a

* 51. $r=\frac{a}{6}, d=$?,$C=?$ 0.33a, 1.05a

49. $r=6 \frac{3}{4}$ in., $d=?, C=$ $?$

Find the exact circumference of each circle.
52.

53.

$5 \pi \mathrm{ft}$
54.

$10 \pi \sqrt{2}$ in.
55.

$8 \pi \mathrm{~cm}$
56. 1; This description is the definition of a radius.

Drawing a radius and circle on the map is the last clue to help you find the hidden treasure. Visit wwww.geometryonline. com/webquest to continue work on your WebQuest project.
56. PROBABILITY Find the probability that a segment with endpoints that are the center of the circle and a point on the circle is a radius. Explain.
57. PROBABILITY Find the probability that a chord that does not contain the center of a circle is the longest chord of the circle.
0 ; The longest chord of a circle is the diameter, which contains the center.
FIREWORKS For Exercises 58-60, use the following information.
Every July 4th Boston puts on a gala with the Boston Pops Orchestra, followed by a huge fireworks display. The fireworks are shot from a barge in the river. There is an explosion circle inside which all of the fireworks will explode. Spectators sit outside a safety circle that is 800 feet from the center of the fireworks display.
58. Find the approximate circumference of the
 safety circle. 5026.5 ft
59. If the safety circle is 200 to 300 feet farther from the center than the explosion circle, find the range of values for the radius of the explosion circle. $500-600 \mathrm{ft}$
60. Find the least and maximum circumference of the explosion circle to the nearest foot. $3142 \mathrm{ft} ; 3770 \mathrm{ft}$

Online Research Data Update Find the largest firework ever made. How does its dimension compare to the Boston display? Visit www.geometryonline.com/data_update to learn more.
61. CRITICAL THINKING In the figure, O is the center of the circle, and $x^{2}+y^{2}+p^{2}+t^{2}=288$. What is the exact circumference of $\odot O$? 24π units
62. WRITING IN MATH

Answer the question that was posed
 at the beginning of the lesson. See margin.
How far does a carousel animal travel in one rotation?
Include the following in your answer:

- a description of how the circumference of a circle relates to the distance traveled by the animal, and
- whether an animal located one foot from the outside edge of the carousel travels a mile when it makes 22 rotations for each ride.
www.geometryonline.com/self_check_quiz
Lesson 10-1 Circles and Circumference 527

Enrichment, p. 546

The Four Color Problem
Mapmakers have long believed that only four colors are necessary to
distinguish among any number of different countries on a plane map. distinguish among any number of different countries on a planser map.
Countries that meet only at a point may have the same color provided they do not have an actual border. The conjecture that four colors ale
sufficient for every conceivable plane map eventually atruacted the
 problem." Despite extraordinary efforts over many years to solve the
probem,
podefinite answer was obtained until the 1980 . Four colors probem, no definite answer was obtained until the 1980 . Four col
are indeed sufficient, and the proof was accomplished by making The fise The following problems will help you appreciate some of the
complexities of the four-collo problem For these complexities of the four-color problem. For
each closed region is a different country.

1. What is the minimum number of colors necessary for each map?

Study Guide and Intervention, p. 541 (shown) and p. 542

Parts of Circles A circle consists of all points in a plane that are a given distance, called the radius, from a given point called the center

A segment or line can intersect a circle in several ways.

- A segment with endpoints that are the center of the circle and
- A segment with endpoints that lie on the circle is a chord.
- A chord that contains the circle's center is a diameter.

Example

a. Name the circle.

The name of the circle is $\odot 0$
b. Name radii of the circle. $\overline{A O}, \overline{B O}, \overline{C O}$, and $\overline{D O}$ are radii
c. Name chords of the circle
d. Name a diameter of the circle.
$\frac{A B}{A B}$ is a diameter

SUNDIALS For Exercises 14 and 15, use the following information. Herman purchased a sundial to use as the centerpiece for a garden. The diameter of the
sundial is 9.5 inches
14. Find the radius of the sundial. 4.75 in
15. Find the circumference of the sundial to the nearest hundredth. 29.85 in

Reading to Learn

Mathematics, p. 545

Pre-Activity How far does a carousel animal travel in one rotation? Read the introduction to Lesson $10-1$ at the top of page 522 in your textbook.
How could you measure the approximate How could you measure the approximate distance around the circular
carousel using everyday measuring devices? Sample answer: Place carousel using everyday measuring devices? Sample answer: Place a
pieee of string long the rim of the carousel. Cut off a length
of string that covers the perimeter of the circle. Straighten the of string that covers the perimeter of the
string and measure it with a yardstick.

Reading the Lesson

1. Refer to the figure.
a. Name the circle. $\odot \square$
a. Name the circle. $\odot Q$
b. Name four radii of the circle. $\overline{Q P}, \overline{Q R}, \overline{Q S}$, and $\overline{Q T}$
c. Name a diameter of the circle. $P R$
d. Name two chords of the circle. $\overline{P R}$ and $\overline{S T}$

2. Match each description from the first column with the best term from the second
column. (Some terms in the second column may be used more than once or not at all.) a. a segment whose endpoints are on a circle iii
$\begin{array}{ll}\text { b. the set of all points in a plane that are the same distance } & \begin{array}{l}\text { i. radius } \\ \text { ii. diameter a }\end{array} \\ \text { firom a given point iv }\end{array}$
c. the distance between the center of a circle and any point on $\quad \begin{aligned} & \text { iii. chord } \\ & \text { iv. circle }\end{aligned}$
c. the circle i
d. a chord that passes through the center of a circle ii
iiii. chord
iv. circle
v. circumfer
v. circumference
e. a segment whose endpoints are the center and any point on
a circle i
f. a chord made up of two collinear radii
g. the distance around a circle \mathbf{V}
3. Which equations correctly express a relationship in a circle? A, D, G

A. $d=2 r$	B. $C=\pi r$	c. $C=2 d$	
E. $r=\frac{d}{\pi}$	F. $C=r^{2}$	G. $C=2 \pi r$	H. $d=\frac{C}{\pi}$

Helping You Remember
4. A good way to remember a new geometric term is to relate the word or its parts to geometric terms you already know. Look up the origins of the two parts of the word
diameter in your dictionary. Explain the meaning of each part and give a term vou already know that shares the origin of theat part. Sample answerve. The first tourt
comes from dia, which means across or through, as in diagonal The comes from dia, which means across or through, as in diagonal. The
second part comes from metron, which means measure, as in geometry

4 Assess

Open-Ended Assessment

Speaking Students can practice the vocabulary terms in this lesson by describing selected circles and defining terms aloud. For example, find a circle in the lesson without values, and call on students to name its parts. Then ask students to state the values for the radius and circumference of the circle if the diameter is 10 units, 20 units, etc.

Getting Ready for Lesson 10-2

Prerequisite Skill Students will learn about angles and arcs in Lesson 10-2. They will use angle addition to find angle measures in circles. Use Exercises 75-80 to determine your students' familiarity with angle addition.

Answers

73. Given: $\overline{\operatorname{Ra}}$ bisects $\angle S R T$.

Prove: $m \angle S Q R>m \angle S R Q$

Proof:
Statements (Reasons)

1. $\overline{R a}$ bisects $\angle S R T$. (Given)
2. $\angle S R Q \cong \angle Q R T$ (Def. of \angle bisector)
3. $m \angle S R Q=m \angle Q R T$ (Def. of \cong © $)$
4. $m \angle S Q R=m \angle T+m \angle Q R T$ (Exterior Angle Theorem)
5. $m \angle S Q R>m \angle Q R T$ (Def. of Inequality)
6. $m \angle S Q R>m \angle S R Q$ (Substitution)

Standardized
Test Practice
(A) (B) C) (D)
63. GRID IN In the figure, the radius of circle A is twice the radius of circle B and four times the radius of circle C. If the sum of the circumferences of the three circles is 42π, find the measure of $\overline{A C}$. 27
64. ALGEBRA There are k gallons of gasoline available to fill a tank. After d gallons have been pumped, what percent of gasoline, in terms of k and d, has been pumped? A
(A) $\frac{100 d}{k} \%$
(B) $\frac{k}{100 d} \%$
(C) $\frac{100 k}{d} \%$
(D) $\frac{100 k-d}{k} \%$

Extending the Lesson
65. CONCENTRIC CIRCLES Circles that have the same center, but different radii, are called concentric circles. Use the
 figure at the right to find the exact circumference of each circle. List the circumferences in order from least to greatest. $10 \pi, 20 \pi, 30 \pi$ เー

Maintain Your Skills

Mixed Review
Find the magnitude to the nearest tenth and direction to the nearest degree of each vector. (Lesson 9-6)
66. $\overrightarrow{A B}=\langle 1,4\rangle 4.1 ; 76^{\circ}$
67. $\overrightarrow{\mathbf{v}}=\langle 4,9\rangle 9.8 ; 66^{\circ}$
68. $\overline{A B}$ if $A(4,2)$ and $B(7,22) 20.2$; 81°
69. $\overline{C D}$ if $C(0,-20)$ and $D(40,0)$
44.7; 27°

Find the measure of the dilation image of $\overline{A B}$ for each scale factor k. (Lesson 9-5)
70. $A B=5, k=630$
71. $A B=16, k=1.524$
72. $A B=\frac{2}{3}, k=-\frac{1}{2} \frac{1}{3}$
73. PROOF

Write a two-column proof. (Lesson 5-3)
Given: $\overline{R Q}$ bisects $\angle S R T$.
Prove: $m \angle S Q R>m \angle S R Q$

See margin.
74. COORDINATE GEOMETRY Name the missing coordinates if $\triangle D E F$ is isosceles with vertex angle E. (Lesson 4-3) $(2 a, 0)$

Getting Ready for the Next Lesson

Teacher to Teacher

Kim A. Halvorson, DeSoto County High School
Arcadia, FL
My students are asked to decorate a T-shirt with a "pi" theme. Then they wear them on March 14 (3.14). The rest of the school (via morning announcements) is encouraged to ask the geometry students to discuss their shirts.

What You'll Learn

Vocabulary
central angle arc
minor arc

- major arc
semicircle
- Recognize major arcs, minor arcs, semicircles, and central angles and their measures.
- Find arc length.

What
 kinds of angles do the hands on a clock form?

Most clocks on electronic devices are digital, showing the time as numerals. Analog clocks are often used in decorative furnishings and wrist watches. An analog clock has moving hands that indicate the hour, minute, and sometimes the second. This clock face is a circle. The three hands form three central angles of the circle.

ANGLES AND ARCS In Chapter 1, you learned that a degree is $\frac{1}{360}$ of the circular rotation about a point. This means that the sum of the measures of the angles about the center of the clock above is 360 . Each of the angles formed by the clock hands is called a central angle. A central angle has the center of the circle as its vertex, and its sides contain two radii of the circle.

Key Concept
 Sum of Central Angles

- Words The sum of the measures of the central angles of a circle with no interior points in common is 360 .
- Example $m \angle 1+m \angle 2+m \angle 3=360$

Example 1 Measures of Central Angles

ALGEBRA Refer to $\odot O$.
a. Find $m \angle A O D$.
$\angle A O D$ and $\angle D O B$ are a linear pair, and
the angles of a linear pair are supplementary.

$$
\begin{aligned}
m \angle A O D+m \angle D O B & =180 & & \\
m \angle A O D+m \angle D O C+m \angle C O B & =180 & & \text { Angle Sum Theorem } \\
25 x+3 x+2 x & =180 & & \text { Substitution } \\
30 x & =180 & & \text { Simplify. } \\
x & =6 & & \text { Divide each side by } 60 .
\end{aligned}
$$

se the value of x to find $m \angle A O D$.

$$
\begin{aligned}
m \angle A O D & =25 x & & \text { Given } \\
& =25(6) \text { or } 150 & & \text { Substitution }
\end{aligned}
$$

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 547-548
- Skills Practice, p. 549
- Practice, p. 550
- Reading to Learn Mathematics, p. 551
- Enrichment, p. 552
- Assessment, p. 603

1 Focus

5-Minute Check
 Transparency 10-2 Use as

 a quiz or review of Lesson 10-1.Mathematical Background notes are available for this lesson on p. 520C.

What
 kinds of angles do the hands on a clock form?

Ask students:

- Do the three angles on the clock appear to be acute, obtuse, or right angles? 2 acute, 1 obtuse
- Why do you think the angles formed by the three hands are called central angles? Because the three angles share the center of the circle as a vertex.

Resource Manager

Transparencies

5-Minute Check Transparency 10-2
Answer Key Transparencies

2 Teach

ANGLES AND ARCS

In-Class Example

1 ALGebra $\overline{R V}$ is a diameter of $\odot T$.

a. Find $m \angle R T S$. 52
b. Find $m \angle Q T R .40$

Study Tip

Naming Arcs Do not assume that because an arc is named by three letters that it is a semicircle or major arc. You can also correctly name a minor arc using three letters.
b. Find $m \angle A O E$.
$\angle A O E$ and $\angle A O D$ form a linear pair.

$$
\begin{aligned}
m \angle A O E+m \angle A O D & =180 & & \text { Linear pairs are supplementary. } \\
m \angle A O E+150 & =180 & & \text { Substitution } \\
m \angle A O E & =30 & & \text { Subtract } 150 \text { from each side. }
\end{aligned}
$$

A central angle separates the circle into two parts, each of which is an arc. The measure of each arc is related to the measure of its central angle.

Key Concept			Arcs of a Circle
Type of Arc:	minor arc	major arc	semicircle
Example:			
Named:	usually by the letters of the two endpoints $\widehat{A C}$	by the letters of the two endpoints and another point on the arc $\widehat{D F E}$	by the letters of the two endpoints and another point on the arc $\widehat{J M L}$ and $\widehat{J K L}$
Arc Degree Measure Equals:	the measure of the central angle and is less than 180 $\begin{aligned} m \angle A B C & =110 \\ \text { so } m \widehat{A C} & =110 \end{aligned}$	360 minus the measure of the minor arc and is greater than 180 $\begin{aligned} & m \widehat{m F E}=360-m \widehat{D E} \\ & m \widehat{D F E}=360-60 \text { or } 300 \end{aligned}$	$360 \div 2 \text { or } 180$ $\begin{aligned} & m \overline{J M L}=180 \\ & m \widehat{J M L}=180 \end{aligned}$

Arcs with the same measure in the same circle or in congruent circles are congruent.

Theorem 10.1

In the same or in congruent circles, two arcs are congruent if and only if their corresponding central angles are congruent.

$$
\text { You will prove Theorem } 10.1 \text { in Exercise } 54 .
$$

Arcs of a circle that have exactly one point in common are adjacent arcs. Like adjacent angles, the measures of adjacent arcs can be added.

Postulate 10.1

Arc Addition Postulate The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

Example: In $\odot S, m \widetilde{P Q}+m \widetilde{Q R}=m \widehat{P Q R}$.

In $\odot F, m \angle D F A=50$ and $\overline{C F} \perp \overline{F B}$. Find each measure.
a. $m \overparen{B E}$
$\overparen{B E}$ is a minor arc, so $m \overparen{B E}=m \angle B F E$.

$$
\begin{aligned}
\angle B F E & \cong \angle D F A & & \text { Vertical angles are congruent. } \\
m \angle B F E & =m \angle D F A & & \text { Definition of congruent angles } \\
m \widehat{B E} & =m \angle D F A & & \text { Transitive Property } \\
m \widehat{B E} & =50 & & \text { Substitution }
\end{aligned}
$$

b. $m \overline{C B E}$
$\widehat{C B E}$ is composed of adjacent $\operatorname{arcs}, \widehat{C B}$ and $\overparen{B E}$.

$$
\begin{aligned}
m \widehat{C B} & =m \angle C F B & & \\
& =90 & & \angle C F B \text { is a right angle. } \\
m \widehat{C B E} & =m \widehat{C B}+m \widehat{B E} & & \text { Arc Addition Postulate } \\
m \widehat{C B E} & =90+50 \text { or } 140 & & \text { Substitution }
\end{aligned}
$$

c. $m \widehat{A C E}$

One way to find $m \widehat{A C E}$ is by using $\widehat{A C B}$ and $\widehat{B E}$.
$\widehat{A C B}$ is a semicircle.

$$
\begin{array}{ll}
m \widehat{A C E}=m \widehat{A C B}+\widehat{B E} & \text { Arc Addition Postulate } \\
m \widehat{A C E}=180+50 \text { or } 230 & \text { Substitution }
\end{array}
$$

In a circle graph, the central angles divide a circle into wedges to represent data, often expressed as a percent. The size of the angle is proportional to the percent.

Example 3 Circle Graphs

FOOD Refer to the graphic.
a. Find the measurement of the central angle for each category.
The sum of the percents is 100% and represents the whole. Use the percents to determine what part of the whole circle (360°) each central angle contains.

$$
\begin{aligned}
2 \%\left(360^{\circ}\right) & =7.2^{\circ} \\
6 \%\left(360^{\circ}\right) & =21.6^{\circ} \\
28 \%\left(360^{\circ}\right) & =100.8^{\circ} \\
43 \%\left(360^{\circ}\right) & =154.8^{\circ} \\
15 \%\left(360^{\circ}\right) & =54^{\circ} \\
4 \%\left(360^{\circ}\right) & =14.4^{\circ}
\end{aligned}
$$

b. Use the categories to identify any arcs that are congruent.

The arcs for the wedges named Once a month and Less than once a month are congruent because they both represent 2% or 7.2° of the circle.

2 In $\odot P, m \angle N P M=46, \overline{P L}$ bisects $\angle K P M$, and $\overline{O P} \perp \overline{K N}$. Find each measure.

a. $m \widehat{O K} 90$
b. $m \widehat{L M} 67$
c. $m J K O 316$

3 BICYCLES This graph shows the percent of each type of bicycle sold in the United States in 2001.
Bicycles Bought Last Year (by type)

a. Find the measurement of the central angle representing each category. List them from least to greatest. $25.2^{\circ}, 32.4^{\circ}$, $75.6^{\circ}, 93.6^{\circ}, 133.2^{\circ}$
b. Is the arc for the wedge named Youth congruent to the arc for the combined wedges named Other and Comfort? no

D A I L Y TNERVENTION
 Differentiated Instruction

Interpersonal Draw a circle segmented with different sizes of central angles. Shade each portion of the circle with a different color. Repeat for two other circles the same size, but with different central angles. Laminate the paper, cut out the circles, and separate each portion. Provide the cutouts to groups of students who can fit the pieces together to form the three circles, find the central angle measures, arc measures, circumferences and arc lengths. Groups can compare to check results and/or determine which group is the most efficient at finding all the correct information.

ARC LENGTH

Teaching Tip Tell students that they can set up a proportion to find an arc length because they are finding a portion of the circumference. Explain that this process is very similar to finding a percent of a whole.

In-Class Example

Teaching Tip If students want to see this problem another way, explain that 120 is $\frac{1}{3}$ of 360 as each arc length would be equal to $\frac{1}{3}$ of the total circumference. So, students can divide 30π by 3 and get the same answer.

In $\odot B, A C=9$ and $m \angle A B D=$ 40. Find the length of $\widehat{A D}$.

π units or about 3.14 units
Teaching Tip Have students construct a circle like the one in Example 4 and measure its radius. Have them use string to trace the circumference of the circle. Mark on the string the points that are the endpoints of the arc. After calculating the circumference, have them use a ruler to verify the arc length.

Answers

1. Sample answer: $\widehat{A B}, \widehat{B C}, \widehat{A C}, \widehat{A B C}$, $\widehat{B C A}, \widehat{C A B} ; m \widehat{A B}=$ 110, $m \overparen{B C}=160$,

$m \widehat{A C}=90, m \widehat{A B C}=270$, $m \widehat{B C A}=250, m \widehat{C A B}=200$
2. A diameter divides the circle into two congruent arcs. Without the third letter, it is impossible to know which semicircle is being referenced.
3. Sample answer: Concentric circles have the same center, but different radius measures; congruent circles usually have different centers but the same radius measure.

ARC LENGTH Another way to measure an arc is by its length. An arc is part of the circle, so the length of an arc is a part of the circumference.

Study Tip

Look Back
To review proportions, see Lesson 6-1.

Example 4 Arc Length

In $\odot P, P R=15$ and $m \angle Q P R=120$. Find the length of $\widehat{Q R}$. In $\odot P, r=15$, so $C=2 \pi(15)$ or 30π and $m \widehat{Q R}=m \angle Q P R$ or 120 . Write a proportion to compare each part to its whole.

$$
\begin{aligned}
\text { degree measure of arc } & \rightarrow \frac{120}{360}=\frac{\ell}{30 \pi} \leftarrow \leftarrow \text { arc length } \\
\text { degree measure of whole circle } & \rightarrow
\end{aligned}
$$

Now solve the proportion for ℓ.

$$
\begin{array}{rlrl}
\frac{120}{360} & =\frac{\ell}{30 \pi} & \\
\frac{120}{360(30 \pi)} & =\ell & & \text { Multiply each side by } 30 \pi . \\
10 \pi & =\ell & & \text { Simplify. } \\
\text { The length of } \widetilde{Q R} & \text { is } 10 \pi \text { units or about } 31.42 \text { units. }
\end{array}
$$

The proportion used to find the arc length in Example 4 can be adapted to find the arc length in any circle.

Key Concept Arc Length
 degree measure of arc $\rightarrow \frac{A}{360}=\frac{\ell}{2 \pi r} \leftarrow$ arc length degree measure of whole circle $\rightarrow \overline{360}=\frac{\ell}{2 \pi r} \leftarrow$ circumference This can also be expressed as $\frac{A}{360} \cdot C=\ell$.

Check for Understanding

Concept Check

1. OPEN-ENDED Draw a circle and locate three points on the circle. Name all of the arcs determined by the three points and use a protractor to find the measure of each arc. 1-3. See margin.
2. Explain why it is necessary to use three letters to name a semicircle.
3. Describe the difference between concentric circles and congruent circles.

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4-7$	1
$8-11$	2
12	3
13	4

ALGEBRA Find each measure.
4. $m \angle$ NCL 120
5. $m \angle R C L 137$
6. $m \angle R C M 43$
7. $m \angle R C N 103$

In $\odot A, m \angle E A D=42$. Find each measure.
8. $m \widehat{B C} 42$
9. $m \overline{\mathrm{CBE}} 180$
10. $m \widehat{E D B} 222$
11. $m \overparen{C D} 138$
12. Points T and R lie on $\odot W$ so that

$W R=12$ and $m \angle T W R=60$. Find
the length of $\overline{T R} .4 \pi \approx 12.57$ units

D A I L Y

INIERVENIION

Unlocking Misconceptions

Arcs Students may sometimes confuse the terms arc measure and arc length. Explain that they can remember that angles have degree measure, denoted $m \angle A B C$; similarly, arcs have degree measure, denoted $m \overparen{A C}$. Just as segment length is a distance along a line, arc length is a distance along a curve that you can actually follow or draw with a pencil. Point out that students should be careful to determine whether they need to find the measure or length of an arc.

Application 13. SURVEYS The graph shows the results of a survey of 1400 chief financial officers who were asked how many hours they spend working on the weekend. Determine the measurement of each angle of the graph. Round to the nearest degree. Sample answer: $25 \%=90^{\circ}$ $23 \%=83^{\circ}, 28 \%=101^{\circ}$, $22 \%=79^{\circ}, 2 \%=7^{\circ}$

Executives Working on the Weekend

Source: Accountemps

* indicates increased difficulty

Practice and Apply

Homerwork Help	
$\begin{gathered} \text { For } \\ \text { Exercises } \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Examples } \end{gathered}$
14-23	1
24-39	2
40-43	3
44-45	4
Extra Practice See page 774.	

Find each measure
14. $m \angle C G B 120$
15. $m \angle B G E 60$
16. $m \angle A G D 90$
17. $m \angle D G E 30$
18. $m \angle C G D 150$
19. $m \angle A G E 120$

ALGEBRA Find each measure.
20. $m \angle Z X V 115$
21. $m \angle Y X W 115$
22. $m \angle Z X Y 65$
23. $m \angle V X W 65$

In $\odot O, \overline{E C}$ and $\overline{A B}$ are diameters, and $\angle B O D \cong \angle D O E \cong \angle E O F \cong \angle F O A$. Find each measure.
24. $m \overparen{B C} 90$
25. $m \overline{A C} 90$
26. $m \widehat{A E} 90$
27. $m \overparen{E B} 90$
28. $m \overline{A C B} 180$
29. $m \widehat{A D} 135$
30. $m \widehat{C B F} 225$
31. $m \overline{A D C} 270$
 $m \angle U Z Y=2 x+24$, and $\overline{V Y}$ and $\overline{W U}$ are diameters. Find each measure.
32. $m \overline{U Y} 76$
33. $m \overline{W V} 76$
34. $m \overline{W X} 52$
35. $m \overline{X Y} 52$
36. $m \overline{W U Y} 256$
37. $m \overline{Y V W} 256$
38. $m \overline{X V Y} 308$
39. $m \overline{W U X} 308$

The diameter of $\odot C$ is 32 units long. Find the length of each arc for the given angle measure.
40. $\frac{188 \pi}{9} \approx 27.93$ units
40. $\widehat{D E}$ if $m \angle D C E=100$
41. $D H E$ if $m \angle D C E=90$
42. $\overline{\mathrm{HDF}}$ if $m \angle H C F=125$ $\frac{188 \pi}{9} \approx 65.62$ units
43. $\widehat{H D}$ if $m \angle D C H=45$
$4 \pi \approx 12.57$ units
$41.24 \pi \approx 75.40$ units

Enrichment, p. 552

Curves of Constant Width
A circle is called a curve of constant width because no matter how you turn it the the createst of distantantant wardsth because no matter
However, the circle is is not the only

- 3

1. Use a metric ruler to find the distance from P to
any point on the opposite side 4.6 cm 1. Use a metric ruler to find the distance fin
any point on the opposite side. 4.6 cm 2. Find the distance from Q to the opposite side. 4.6 cm 3. What is the distance from R to the opposite side? 4.6 cm The Reuleaux triangle is made of three arcs. In the examp
shown, $P Q$ has center $R, \frac{Q R}{Q R}$ has center P and $P R$ has shown, $P Q$
center Q.
2. Trace the Reuleaux triangle above on a piece of paper and 4. Trace the Reuleaux triangle above on a piece of paper and
cut tit out Make a suare with sides the length you found in
Exercise 1. Show that you can turn the triande Exercise 1 Show that you can turn the triangle inside the

Study Guide and Intervention, p. 547 (shown) and p. 548

Angles and Arcs A entral angle is an angle whose vertex is at the center of a circcle and whose

 into two arcs, a major arc and a minor are.

- The measure of a major arc is 360 minus the
measure of the minor arc.
- Two arcs are congruent if and only if their
corresponding central angles are congruent.
- The measure of an arc formed by two adjacent
ares is the sum of the measures of the two arcs.
(Arc Addition Postulate)

asios

ExamplB In $\odot R, m \angle A R B=42$ and $\overline{A C}$ is a diameter.
Find $m \widehat{A B}$ and $m \overline{A C B}$.
Find $m A B$ and $m A C B$.
$\angle A R B$ is a central angle and $m \angle A R B=42$, so $m \widehat{A B}=42$.
Thus $m A C B=360-42$ or 318 .

HOMEWORK For Exercises 17 and 18, refer to the table, which shows the numberer of hours studentst at theland
High School say they spend on homework each night.
17. If you were to construct a circle graph of the data, how many
degrees would be allotted to each category? $28.8^{\circ}, 104.4^{\circ}, 208.8^{\circ}, 10.8^{\circ}, 72^{\circ}$
8. Describe the arcs associated with each category.

The arc associated with 2-3 hours is a major arc

Reading to Learn
Mathematics, p. 551
Pre-Activity What kinds of angles do the hands on a clock form? Read the introduction to Lesson $10-2$ at the top of page 529 in your textbon - What is the measure of the angle formed by the hour hand and the
minute hand of the clock at $5: 0$? 150 minute hand of the clock at $5: 00$? 150
What is the measure of the angle formed by the hour hand and the min hat is the measure of the angle formed by the hour hand and the minn
hand at 10:30? (Hint: How has each hand moved since 10:00? 135
Reading the Lesson

1. Refer to $\odot P$. Indicate whether
a. $\overline{D A B}$ is major arc. false
a. $\overline{D A B}$ is a major are. fals
b. $A D C$ is a semicirc
d. $\widehat{D A}$ and $\overparen{A B}$ are adjacent arcs. true
e. $\angle B P C$ is an acute central angle. false
f. $\angle D P A$ and $\angle B P A$ are supplementary central angles. false
2. Refer to the figure in Exercise 1. Give each of the following arc measures.
$\begin{array}{ll}\text { a. } m \overline{A B} 52 & \text { b. } m \overline{C D} 90 \\ \text { c. } m \overline{B C} 128 & \text { d. } m \overline{A D C} 18\end{array}$
e. $m \overline{D A B} 142 \quad$ d. $m \overline{A D C} 180$
g. $m \overparen{D A C} 270 \quad$ h. $m \widehat{B D A} 308$
a. The arc measure of a semicircle is $(90 / 180 / 360$
b. Arcs of a circle that have exactly on
(congruent opposite/adjacent) arcs.
c. The measure of a major arc is greater than ($0 / 90 / 180$) and less than $(90 / 180 / 360)$.
c. The measure of a mapor arc is greater than
d. Suppose a set of central angles of a circle have interiors that do not overlap II the
angles and their interiors contain all points of the circle then the sum of the angles and their interiors contain all points of the circle, then the sum of the e. The measure of an arc formed by two adjacent arcs is the (sum/difference/product)
the measures of the two arcs.
f. The measure of a minor arc is greater than (0/90/180) and less than $(90 / 180 / 360)$
Helping You Remember
3. A good way to remember something is to explain it to someone else. Suppose your
classmate Luis does not like to work with proportions. What is a way that he can find the length of a minor arc of a circle without solving a proportion? Sample answer: Divide the measure of the central angle of the arc by 360 to form a
fraction. Multiply this fraction by the circumference of the circle to find traction. Multiply this fraction by the circumference of the circle to find
the length of the arc.

Study Notebook
HAve students-
- add the definitions/examples of
the oocabular terms to their
Vocabulary Builder workhecets for
Chapter 10.
- inlude enn other item(s) that they
find helpful in mastering the skills
in this lesson.

About the Exercises... Organization by Objective

- Angles and Arcs: 14-43
- Arc Length: 44-45

Odd/Even Assignments
Exercises 14-43 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercise 46 requires a compass.

Assignment Guide

Basic: 15-37 odd, 41-55 odd, 57-76
Average: 15-55 odd, 57-76
Advanced: 14-50 even, 51, 52, 54, 55-70 (optional: 71-76)

Answers

46. How many free files have you collected?

47. Given: $\angle B A C \cong \angle D A E$

Prove: $\overline{B C} \cong \widehat{D E}$

44. Sample answer:
$76 \%=273^{\circ}, 16 \%=$
$58^{\circ}, 5 \%=18^{\circ}$,
$3 \%=11^{\circ}$
45. The first category
is a major arc, and the other three categories are minor arcs.

Irrigation
In the Great Plains of the United States, farmers use center-pivot irrigation systems to water crops. New low-energy spray systems water circles of land that are thousands of feet in diameter with minimal water loss to evaporation from the spray. Source: U.S. Geological Survey

PROOF Write a proof of Theorem 10.1. See margin.
PROOF Write a proof of Theorem 10.1. See margin.
55. CRITICAL THINKING The circles at the right are concentric circles that both have point E as their center. If $m \angle 1=42$, determine whether $\widehat{A B} \cong \widehat{C D}$. Explain. No; the radii are not equal, so the proportional part of the circumferences would not be the same. Thus, the arcs would not be congruent.
56. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
What kind of angles do the hands of a clock form?
Include the following in your answer:

- the kind of angle formed by the hands of a clock, and
- several times of day when these angles are congruent.

ONLINE MUSIC For Exercises 44-46, refer to the table and use the following information. A recent survey asked online users how many legally free music files they have collected. The results are shown in the table.
44. If you were to construct a circle graph of this information, how many degrees would be needed for each category?
45. Describe the kind of arc associated with each category.
46. Construct a circle graph for these data. See margin.

Determine whether each statement is sometimes, always, or never true.
47. The measure of a major arc is greater than 180. always
48. The central angle of a minor arc is an acute angle. sometimes
49. The sum of the measures of the central angles of a circle depends on the measure of the radius. never 50. The semicircles of two congruent circles are congruent. always
51. CRITICAL THINKING Central angles 1,2 , and 3 have measures in the ratio $2: 3: 4$. Find the measure of each angle. $m \angle 1=80, m \angle 2=120, m \angle 3=160$

52. CLOCKS The hands of a clock form the same angle at various times of the day. For example, the angle formed at 2:00 is congruent to the angle formed at 10:00. If a clock has a diameter of 1 foot, what is the distance along the edge of the clock from the minute hand to the hour hand at $2: 00 ? 2 \pi \mathrm{in} . \approx 6.3 \mathrm{in}$.
. 53. IRRIGATION Some irrigation systems spray water in a circular pattern. You can adjust the nozzle to spray in certain directions. The nozzle in the diagram is set so it does not spray on the house. If the spray has a radius of 12 feet, what is the approximate length of the arc that the spray creates? 56.5 ft

Free Music Downloads	
How many free music files have you collected?	
100 files or less	76%
101 to 500 files	16%
501 to 1000 files	5%
More than 1000 files	3%

Source: QuickTake.com

Proof:
Statements (Reasons)

1. $\angle B A C \cong \angle D A E$ (Given)
2. $m \angle B A C=m \angle D A E$
(Def. of $\cong \boxed{\boxed{s}}$)
3. $m \widehat{B C}=m \widehat{D E}$ (Def. of arc measure)
4. $\widehat{B C} \cong \overparen{D E}$ (Def. of $\cong \operatorname{arcs})$
5. Sample answer: The hands of the clock form central angles. Answers should include the following.

- The hands form acute, right, and obtuse angles.
- Some times when the angles formed by the minute and hour hand are congruent are at 1:00 and 11:00, 2:00 and 10:00, 3:00 and 9:00, 4:00 and 8:00, and 5:00 and 7:00. They also form congruent angles at many other times of the day, such as 3:05 and 8:55.

57. Compare the circumference of circle E with the perimeter of rectangle $A B C D$. Which statement is true? B
(A) The perimeter of $A B C D$ is greater than the circumference of circle E.
(B) The circumference of circle E is greater than the perimeter of $A B C D$.
(C) The perimeter of $A B C D$ equals the circumference of circle E.
(D) There is not enough information to determine this comparison.
58. SHORT RESPONSE A circle is divided into three central angles that have measures in the ratio $3: 5: 10$. Find the measure of each angle. 60, 100, 200

Maintain Your Skills

Mixed Review The radius, diameter, or circumference of a circle is given. Find the missing measures. Round to the nearest hundredth if necessary. (Lesson 10-1)
59. 20; 62.83
60. 6.5; 40.84
59. $r=10, d=$?,$C=?$
60. $d=13, r=$?,$C=?$
61. $C=28 \pi, d=$ \qquad ,$r=$ 28; 14
62. $C=75.4, d=$ \qquad ? $r=$
63. SOCCER Two soccer players kick the ball at the same time. One exerts a force of 72 newtons east. The other exerts a force of 45 newtons north. What are the magnitude to the nearest tenth and direction to the nearest degree of the resultant force on the soccer ball? (Lesson 9-6) 84.9 newtons, 32° north of due east
ALGEBRA Find x. (Lesson 6-5)
64.

65.

Find the exact distance between each point and line or pair of lines. (Lesson 3-6) 66. point $Q(6,-2)$ and the line with the equation $y-7=09$ units
67. parallel lines with the equations $y=x+3$ and $y=x-4 \sqrt{24.5}$
68. Angle A has a measure of 57.5 . Find the measures of the complement and supplement of $\angle A$. (Lesson 2-8) 32.5, 122.5

Use the following statement for Exercises 69 and 70.
If $A B C$ is a triangle, then $A B C$ has three sides. (Lesson 2-3)
69. Write the converse of the statement. If $A B C$ has three sides, then $A B C$ is a triangle.
70. Determine the truth value of the statement and its converse. Both are true.

Getting Ready for the Next Lesson

PREREQUISITE SKILL Find x. (To review isosceles triangles, see Lesson 4-6.) 71.

$42 \quad 72$.

73.

wwww.geometryonline.com/self_check_quiz
75.

76.

10-3 Lesson Notes

1 Focus

5-Minute Check

Transparency 10-3 Use as a quiz or review of Lesson 10-2.

Mathematical Background notes are available for this lesson on p. 520C.

> Howdo the grooves in a Belgian waffle iron model segments in a circle?

Ask students:

- Excluding the diameter, how many chords can you count in the lower semicircle of the top heated plate on the waffle iron? 4
- If the radius of the top heated plate measures 11 cm , then what is the circumference of the plate? $22 \pi \mathrm{~cm}$ or about 69.12 cm
- If one central angle of the waffle iron measures 90°, then what is the measure of its corresponding minor arc? 90

Resource Manager

Vocabulary

inscribed circumscribed

Study Tip

Reading
Mathematics
Remember that the phrase
if and only if means that the conclusion and the hypothesis can be switched and the statement is still true.

What Youll Learn

- Recognize and use relationships between arcs and chords.
- Recognize and use relationships between chords and diameters.

How
 do the grooves in a Belgian waffle iron model segments in a circle?

Waffle irons have grooves in each heated plate that result in the waffle pattern when the batter is cooked. One model of a Belgian waffle iron is round, and each groove is a chord of the circle.

ARCS AND CHORDS The endpoints of a chord are also endpoints of an arc. If you trace the waffle pattern on patty paper and fold along the diameter, $\overline{A B}$ and $\overline{C D}$ match exactly, as well as $\overrightarrow{A B}$ and $\overline{C D}$. This suggests the following theorem.

You will prove part 2 of Theorem 10.2 in Exercise 4.

Example 1 Prove Theorems
PROOF Theorem 10.2 (part 1)
Given: $\odot X, \overparen{U V} \cong \overline{Y W}$
Prove: $\overline{U V} \cong \overline{Y W}$

Proof:
Statements \mid Reasons

1. $\odot X, \overline{U V} \cong \overline{Y W}$
2. $\angle U X V \cong \angle W X Y$
3. $\overline{U X} \cong \overline{X V} \cong \overline{X W} \cong \overline{X Y}$
4. $\triangle U X V \cong \triangle W X Y$
5. $\overline{U V} \cong \overline{Y W}$
6. Given
7. If arcs are \cong, their corresponding central $\stackrel{s}{ }$ are \cong.
8. All radii of a circle are congruent.
9. SAS
10. СРСТС

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 553-554
- Skills Practice, p. 555
- Practice, p. 556
- Reading to Learn Mathematics, p. 557
- Enrichment, p. 558

Teaching Geometry With Manipulatives
Masters, pp. 16, 17, 162, 163, 164

Transparencies

5-Minute Check Transparency 10-3
Real-World Transparency 10
Answer Key Transparencies
Technology
Interactive Chalkboard

Inscribed and Circumscribed A circle can also be inscribed in a polygon, so that the polygon is circumscribed about the circle. You will learn about this in Lesson 10-5.

The chords of adjacent arcs can form a polygon. Quadrilateral $A B C D$ is an inscribed polygon because all of its vertices lie on the circle. Circle E is circumscribed about the polygon because it contains all the vertices of the polygon.

Example 2 Inscribed Polygons

SNOWFLAKES The main veins of a snowflake create six congruent central angles. Determine whether the hexagon containing the flake is regular.
$\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4 \cong \angle 5 \cong \angle 6$ Given
$\widehat{K L} \cong \widehat{L M} \cong \widehat{M N} \cong \widehat{N O} \cong \widehat{O J} \cong \widehat{J K}$
If central $\angle \mathrm{s}$ are \cong, corresponding arcs are \cong.
$\mathrm{In} \odot, 2$ minor arcs \cong, corr. chords are \cong.

Because all the central angles are congruent, the measure of each angle is $360 \div 6$ or 60 .
Let x be the measure of each base angle in the triangle containing $\overline{K L}$.

$$
\begin{aligned}
m \angle 1+x+x & =180 & & \text { Angle Sum Theorem } \\
60+2 x & =180 & & \text { Substitution } \\
2 x & =120 & & \text { Subtract } 60 \text { from each side. } \\
x & =60 & & \text { Divide each side by } 2 .
\end{aligned}
$$

This applies to each triangle in the figure, so each angle of the hexagon is 2(60) or 120. Thus the hexagon has all sides congruent and all vertex angles congruent.

DIAMETERS AND CHORDS Diameters that are perpendicular to chords create special segment and arc relationships. Suppose you draw circle C and one of its chords $\overline{W X}$ on a piece of patty paper and fold the paper to construct the perpendicular bisector. You will find that the bisector also cuts $\overline{W X}$ in half and passes through the center of the circle, making it contain a diameter.

This is formally stated in the next theorem.

Theorem 10.3

In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.
Example: If $\overline{B A} \perp \overline{T V}$, then $\overline{U T} \cong \overline{U V}$ and $\overline{A T} \cong \overline{A V}$.

You will prove Theorem 10.3 in Exercise 36.
www.geometryonline.com/extra_examples
Lesson 10-3 Arcs and Chords 537

D A \| L Y INIIERVENIION

Differentiated Instruction

Auditory/Musical Summarize the three major concepts of this lesson aloud for auditory students. Explain that they now know that congruent chords share endpoints with congruent arcs and vice versa; plus, the chords are only congruent if and only if they are equidistant from the center of the circle. They have also learned that a diameter perpendicularly bisects any chord of a circle.

2 Teach

ARCS AND CHORDS

In-Class Examples

Power
 Point ${ }^{\circledR}$

1 PROOF Write a proof.
Given: $\overline{D E} \cong \overline{F G}$
$m \angle E B F=24$
$\widehat{D F G}$ is a semicircle.
Prove: $m \angle F B G=78$

1. $\overline{D E} \cong \overline{F G} ; m \angle E B F=24 ; \overline{D F G}$ is a semicircle. (Given)
2. $m \widehat{D F G}=180$ (Def. of semicircle)
3. $\widehat{D E} \cong \widetilde{F G}$ (In $\odot, 2$ chords are \cong, corr. minor arcs are \cong.)
4. $m \overparen{D E}=m \overparen{F G}$ (Def. of $\cong \operatorname{arcs}$)
5. $m \widehat{E F}=24$ (Def. of arc measure)
6. $m \widehat{E D}+m \widehat{E F}+m \widehat{F G}=$ mDFG (Arc Addition Post.)
7. $m \widehat{F G}+24+m \widehat{F G}=180$ (Substitution)
8. $2(m \widetilde{F G})=156$ (Subtr. Prop. and simplify)
9. $m \widehat{F G}=78$ (Div. Prop.)
10. $m \widetilde{F G}=m \angle F B G$ (Def. of arc measure)
11. $m \angle F B G=78$ (Substitution)

2 TESSELLATIONS The rotations of a tessellation can create twelve congruent central angles. Determine whether $\widehat{P Q} \cong \widehat{S T}$. yes

Building on Prior Knowledge

Students learned about the Pythagorean Theorem in Chapter 1. They determined how to prove triangle congruence in Chapter 4, and they learned about segment bisectors in Chapter 5. Students will apply all of these concepts in this lesson as they prove triangle congruence and find segment lengths in circles.

In-Class Example

Teaching Tip Remind students that they can add any known information to a figure to help them solve problems, as radius $\overline{O C}$ has been added to the figure in the example. Tell students to remember that angles, segment lengths, arcs, radii, and diameters all exist even if they are not drawn. Students need to be careful to follow geometric conditions/definitions when they add anything to a figure.

3
Circle W has a radius of 10 centimeters. Radius WL is perpendicular to chord $\overline{H K}$, which is 16 centimeters long.

a. If $m \widehat{H L} \approx 53$, find $m \widehat{M K} . \approx 127$
b. Find JL. 4

Example 3 Radius Perpendicular to a Chord

Circle O has a radius of 13 inches. Radius $\overline{O B}$ is perpendicular to chord $\overline{C D}$, which is 24 inches long.
a. If $m \overparen{C D}=134$, find $m \widehat{C B}$.
$\overline{O B}$ bisects $\overparen{C D}$, so $m \overparen{C B}=\frac{1}{2} m \widehat{C D}$.
$\begin{array}{ll}m \widehat{C B}=\frac{1}{2} m \widehat{C D} & \text { Definition of arc bisector } \\ m \widehat{C B}=\frac{1}{2}(134) \text { or } 67 & m \widehat{C D}=134\end{array}$

b. Find $O X$.

Draw radius $\overline{O C} . \triangle C X O$ is a right triangle.

$C O$	$=13$		$r=13$
$\overline{O B}$ bisects $\overline{C D}$.		A radius perpendicular to a chord bisects it.	
$C X$	$=\frac{1}{2}(C D)$		Definition of segment bisector
	$=\frac{1}{2}(24)$ or 12		$C D=24$

Use the Pythagorean Theorem to find XO.
$(C X)^{2}+(O X)^{2}=(C O)^{2} \quad$ Pythagorean Theorem

$12^{2}+(O X)^{2}$	$=13^{2}$		$C X=12, C O=13$
$144+(O X)^{2}$	$=169$		Simplify.
$(O X)^{2}$	$=25$		Subtract 144 from each side.
$O X$	$=5$		Take the square root of each side.

In the next activity, you will discover another property of congruent chords.

Geometry Activity

Congruent Chords and Distance

Model

Step 1 Use a compass to draw a large circle on patty paper. Cut out the circle.

Step 2 Fold the circle in half.

Step 4 Unfold the circle and label as shown.

Step 5 Fold the circle, laying point V onto T to bisect the chord. Open the circle and fold again to bisect $W Y$. Label as shown.

Analyze 1. $\overline{S U}$ and $\overline{S X}$ are perpendicular bisectors of $\overline{V T}$ and $\overline{W Y}$, respectively.

1. What is the relationship between $\overline{S U}$ and $\overline{V T} ? \overline{S X}$ and $\overline{W Y}$?

Step 3 Without opening the circle, fold the edge of the circle so it does not intersect the first fold.

2. Use a centimeter ruler to measure $\overline{V T}, \overline{W Y}, \overline{S U}$, and $\overline{S X}$. What do you find? $V T=W Y, S U=S X$
3. Make a conjecture about the distance that two chords are from the center when they are congruent.

Sample answer: When the chords are congruent, they are equidistant from the center of the circle.

Geometry Activity

Materials: compass, patty paper, centimeter ruler

- Students can use a ruler to draw $\overline{V T}, \overline{W Y}, \overline{S T}$, and $\overline{S Y}$.
- To reinforce concepts, have students measure the central angles and determine if $\bar{\pi} \cong \bar{W}$.

The Geometry Activity suggests the following theorem.

Theorem 10.4

In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

You will prove Theorem 10.4 in Exercises 37 and 38.

Example 4 Chords Equidistant from Center

Chords $\overline{A C}$ and $\overline{D F}$ are equidistant from the center. If the radius of $\odot G$ is 26 , find $A C$ and $D E$.
$\overline{A C}$ and $\overline{D F}$ are equidistant from G, so $\overline{A C} \cong \overline{D F}$.
Draw $\overline{A G}$ and $\overline{G F}$ to form two right triangles. Use the Pythagorean Theorem.

$$
\begin{aligned}
(A B)^{2}+(B G)^{2} & =(A G)^{2} & & \text { Pythagorean Theorem } \\
(A B)^{2}+10^{2} & =26^{2} & & B G=10, A G=26 \\
(A B)^{2}+100 & =676 & & \text { Simplify. } \\
(A B)^{2} & =576 & & \text { Subtract } 100 \text { from each side. } \\
A B & =24 & & \text { Take the square root of each side. }
\end{aligned}
$$

$A B=\frac{1}{2}(A C)$, so $A C=2(24)$ or 48 .
$\overline{A C} \cong \overline{D F}$, so $D F$ also equals 48 . $D E=\frac{1}{2} D F$, so $D E=\frac{1}{2}(48)$ or 24 .

Check for Understanding

Concept Check 1. Explain the difference between an inscribed polygon and a circumscribed circle.

1-2. See margin.
3. Tokei; to bisect the chord, it must be a diameter and be perpendicular.
2. OPEN ENDED Construct a circle and inscribe any polygon. Draw the radii to the vertices of the polygon and use a protractor to determine whether any sides of the polygon are congruent.
3. FIND THE ERROR Lucinda and Tokei are writing conclusions about the chords in $\odot F$. Who is correct? Explain your reasoning.

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
4	1
$5-7$	3
$8-9$	4
10	2

4. PROOF Prove part 2 of Theorem 10.2. Given: $\odot X, \overline{U V} \cong \overline{W Y}$
Prove: $\widehat{U V} \cong \widehat{W Y}$ See margin.

Circle O has a radius of $10, A B=10$,
and $m \widehat{A B}=60$. Find each measure.
5. $m \widehat{A Y} 30$
6. $A X 5$
7. $O X 5 \sqrt{3}$

In $\odot P, P D=10, P Q=10$, and $Q E=20$.
Find each measure.
8. $A B 40$
9. $P E 10 \sqrt{5} \approx 22.36$

4 Chords $\overline{E F}$ and $\overline{G H}$ are equidistant from the center. If the radius of $\odot P$ is 15 and $E F=24$, find $P R$ and $R H$.

9; 12

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 10.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

 INIERVENIION FIND THE ERRORStress the importance of carefully analyzing figures to determine relationships. Point out that since a diameter or radius that is perpendicular to a chord does bisect the chord, no other segment perpendicular to the chord could bisect it.

Answers

1. Sample answer: An inscribed polygon has all vertices on the circle. A circumscribed circle means the circle is drawn around so that the polygon lies in its interior and all vertices lie on the circle.
2. Sample answer:

None of the sides are congruent.
4. Given: $\odot X, \overline{U V} \cong \overline{W Y}$ Prove: $\widetilde{U V} \cong \widetilde{W Y}$

Proof: Because all radii are congruent, $\overline{X U} \cong \overline{X V} \cong \overline{X W} \cong \overline{X Y}$. You are given that $\overline{U V} \cong \overline{W Y}$, so $\triangle U V X \cong \triangle W Y X$, by SSS. Thus, $\angle U X V \cong \angle W X Y$ by CPCTC. Since the central angles have the same measure, their intercepted arcs have the same measure and are therefore, congruent. Thus, $\widetilde{U V} \cong \widehat{W Y}$.

About the Exercises...

Organization by Objective

- Arcs and Chords: 23-25, 36-38
- Diameters and Chords: 11-22, 26-33

Odd/Even Assignments

Exercises 11-33 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 46-47 require a compass.

Assignment Guide

Basic: 11-19 odd, 23-35 odd, 39, 45-49 odd, 50-65
Average: 11-49 odd, 50-65
Advanced: 12-44 even, 45, 46, 48, 50, 52-59 (optional: 60-65) All: Quiz 1 (1-10)

Answers (page 541)

40.

41.

42.

43.

Application
10. TRAFFIC SIGNS A yield sign is an equilateral triangle. Find the measure of each arc of the circle circumscribed about the yield sign. Each arc measures 120°.

* indicates increased difficulty

Practice and Apply

In $\odot X, A B=30, C D=30$, and $m \overparen{C Z}=40$. Find each measure.
11. $A M 15$
12. $M B 15$
13. CN 15
14. ND 15
15. $m \widehat{D Z} 40$
16. $m \widehat{C D} 80$
17. $m \overline{A B} 80$
18. $m \overparen{Y B} 40$

The radius of $\odot P$ is 5 and $P R=3$.
Find each measure.
19. $Q R 4$
20. QS 8

In $\odot T, Z V=1$, and $T W=13$.
Find each measure.
21. XV 5
22. $X Y 10$

Exercises 21-22
23. $m \widehat{A B}=m \overparen{B C}=$ $m \widehat{C D}=m \widehat{D E}=$
$m \overparen{E F}=m \overparen{F G}=$
$m \widehat{G H}=m \widehat{H A}=45$
24. $m \widehat{L M}=m \widehat{M J}=$ $m \widehat{J K}=m \widehat{K L}=90$
25. $m \widehat{N P}=m \widehat{R Q}=$ 120; $m \overparen{m R}=m \overparen{P Q}=$ 60 about the traffic sign.
23. regular octagon

24. square

25. rectangle

In $\odot F, \overline{F H} \cong \overline{F L}$ and $F K=17$.
Find each measure.
26. LK 15
27. KM 30
28. JG 30
29. JH 15

In $\odot D, C F=8, D E=F D$, and
$D C=10$. Find each measure.
30. $F B 8$
31. $B C 16$
32. $A B 16$
33. $E D 6$

34. ALGEBRA In $\odot Z, P Z=Z Q$,
$X Y=4 a-5$, and $S T=-5 a+13$.
Find $S Q .1 .5$
35. ALGEBRA In $\odot B$, the diameter is 20 units long, and $m \angle A C E=45$. Find $x . \sqrt{2} \approx 1.41$ units

Exercise 34

Exercise 35

Sayings •
Many everyday sayings or expressions have a historical origin. The square peg comment is attributed to Sydney Smith (1771-1845), a witty British lecturer, who said "Trying to get those two together is like trying to put a square peg in a round hole."
44. The line through the midpoint bisects the chord and is perpendicular to the chord, so the line is a diameter of the circle. Where two diameters meet would locate the center of the circle.

Study Tip

Finding the Center of a Circle The process Mr. Ortega used can be done by construction and is often called locating the center of a circle.
45. Let r be the radius of $\odot P$. Draw radii to points D and E to create triangles. The length $D E$ is $r \sqrt{3}$
and $A B=2 r ;$
$r \sqrt{3} \neq \frac{1}{2(2 r)}$.
36. PROOF Copy and complete the flow proof of Theorem 10.3.
Given: $\odot P, \overline{A B} \perp \overline{T K}$
Prove: $\overline{A R} \cong \overline{B R}, \widehat{A K} \cong \widehat{B K}$

a. Given
b. All radii are congruent.
c. Reflexive Property
d. Definition of perpendicular lines

$\begin{aligned} & \overline{A R} \cong \overline{B R} \\ & \angle 1 \cong \angle 2 \end{aligned}$	$\widehat{A K} \cong \widehat{B K}$	If central $\frac{1}{s}$ are \cong,
f. ?	g. ?	intercepted arcs are \cong.

PROOF Write a proof for each part of Theorem 10.4. 37-38. See 589A.
$\star 37$. In a circle, if two chords are equidistant from the center, then they are congruent.
\star 38. In a circle, if two chords are congruent, then they are equidistant from the center.
.. 39. SAYINGS An old adage states that "You can't fit a square peg in a round hole." Actually, you can, it just won't fill the hole. If a hole is 4 inches in diameter, what is the approximate width of the largest square peg that fits in the round hole? 2.82 in .

40-43. See margin for sample figures.

For Exercises 40-43, draw and label a figure. Then solve.
$\star 40$. The radius of a circle is 34 meters long, and a chord of the circle is 60 meters long. How far is the chord from the center of the circle? 16 m
\star 41. The diameter of a circle is 60 inches, and a chord of the circle is 48 inches long. How far is the chord from the center of the circle? 18 in.
\star 42. A chord of a circle is 48 centimeters long and is 10 centimeters from the center of the circle. Find the radius. 26 cm
$\star 43$. A diameter of a circle is 32 yards long. A chord is 11 yards from the center. How long is the chord? $2 \sqrt{135} \approx 23.24 \mathrm{yd}$
44. CARPENTRY Mr. Ortega wants to drill a hole in the center of a round picnic table for an umbrella pole. To locate the center of the circle, he draws two chords of the circle and uses a ruler to find the midpoint for each chord. Then he uses a framing square to draw a line perpendicular to each chord at its midpoint. Explain how this process locates the center of the tabletop.
45. CRITICAL THINKING A diameter of $\odot P$ has endpoints A and B. Radius $\overline{P Q}$ is perpendicular to $\overline{A B}$. Chord $\overline{D E}$ bisects $\overline{P Q}$ and is parallel to $\overline{A B}$. Does $D E=\frac{1}{2}(A B)$? Explain.

Lesson 10-3 Arcs and Chords 541

Study Guide and Intervention, p. 553 (shown) and p. 554 Arcs and Chords Points on a circle determine both chords
and arcs. Several properties are related to points on a circle.

- In a circle or in congruent circles, two minor arcs are
congruent if
congruent.

Example $\begin{aligned} & \text { Trapezoid } A B C D \text { is inscribed in } \odot 0 \\ & \overline{A B} \cong \overline{B C} \cong \frac{C}{C D} \text { and } m \overline{B C}=50 \text {, what tis } m A P D \text { ? }\end{aligned}$ If $\overline{A B} \cong \overline{B C} \cong \overline{C D}$ and $m \overline{B C}=50$, what is $m \overline{A P D}$?
Chords $\overline{A B}, \overline{B C}$, and $\overline{C D}$ are congruent so $\overline{A B} \overline{B C}$. are congruent. $m \widehat{B C}=50$, so $m \widehat{A B}+m \overline{B C}+m \overline{C D}=$ $50+50+50=150$. Then $m A P D=360-150$ or 210 .

Exicisess		
Each regular polygon is inscribed in a circle. Determine the measure of each arc that corresponds to a side of the polygon.		
1. hexagon	2. pentagon	3. triangle
60	72	120
4. square	5. octagon	6. 36-gon
90	45	10
Determine the measure of each are of the circle circumscribed about the polygon.		
7.4	8. 9.	
$\overline{U T}=m \widehat{R S}=120$	$\begin{aligned} & m \widehat{U T}=m \widetilde{U V}=140 \\ & m \overline{T V}=80 \end{aligned}$	$\begin{aligned} & m \widehat{R S}=m \widehat{S T}= \\ & m \overline{T U}=60 \\ & m \overline{R V U}=180 \end{aligned}$
$m \widehat{S T}=m \widehat{R U}=60$		

Reading to Learn

Mathematics, p. 557

ELL
Pre-Activity $\begin{gathered}\text { How } \\ \text { circ } \\ \text { Read }\end{gathered}$ \qquad
ead the introduction to
What do you What do you observe about any two of the grooves in the waffle in

Reading the Lesson

1. Supply the missing words or phrases to form true statements.
a. In a circle, if a radius is perpendicular to a chord, then it bisects the chord and its
arc
b. In a circle or in congruent circles, two minor arcs are congruent if and
only if their corresponding chords are congruent.
c. In a circle or in
equidistant
congruent
from the center
e. All of the sides of an inscribed polygon are ars in $\frac{\text { vertices }}{\text { chords }}$ lie on the circle.
2. If ΘP has a diameter 40 centimeters long, and
$A C=F D=24$ centimeters, find each measure.

a. $P A 20 \mathrm{~cm}$	b. $A G 12 \mathrm{~cm}$
c. $P E 20 \mathrm{~cm}$	d. $P H 16 \mathrm{~cm}$
e. $H E 4 \mathrm{~cm}$	f. $F G 36 \mathrm{~cm}$
3. $\mathrm{In} \odot Q, R S=V W$ and $m \overline{R S}=70$. Find each measure.	
a. $m \overline{R T} 35$ b. $m \overline{S T} 35$ c. $m \overline{V W} 70$ d. $m \overline{V U} 35$	

Find the measure of each arc of a circle that is circumscribed about the polygo
a. an equilateral triangle 120
c. a regular hexagon 60
b. a regular pentagon 72
b. a regular pentagon 72
d. a regular decagon 36
360
d. a regular decagon 36

Helping You R
5. Some students have trouble distinguishing between inscribed and ciruumscribed figures
What is an easy way to remember which is which? Sample answer: The indcribed figure is inside the circle.

Answers

46. The chords and the radii of the circle are congruent by construction. Thus, all triangles formed by these segments are equilateral triangles. That means each angle of the hexagon measures 120°, making all angles of the hexagon congruent and all sides congruent.
47. The six arcs making up the circle are congruent because the chords intercepting them were congruent by construction. Each of the three chords drawn intercept two of the congruent chords. Thus, the three larger arcs are congruent. So, the three chords are congruent, making this an equilateral triangle.
48. Sample answer: The grooves of a wafife iron are chords of the circle. The ones that pass horizontally and vertically through the center are diameters. Answers should include the following.

- If you know the measure of the radius and the distance the chord is from the center, you can use the Pythagorean Theorem to find the length of half of the chord and then multiply by 2.
- There are four grooves on either side of the diameter, so each groove is about 1 in . from the center. In the figure, $E F=2$ and $E B=4$ because the radius is half the diameter. Using the Pythagorean Theorem, you find that $F B \approx 3.464$ in. so $A B \approx$ 6.93 in. Approximate lengths for other chords are 5.29 in. and 7.75 in., but exactly 8 in. for the diameter.

CONSTRUCTION Use the following steps for each construction in Exercises 46 and 47.Construct a circle, and place a point on the circle.
Using the same radius, place the compass on the point and draw a small arc to intercept the circle.
Using the same radius, place the compass on the intersection and draw another small arc to intercept the circle.
Continue the process in Step 3 until you return to the original point.

46-47. See margin for verifications.
50. $\overline{A B} \cong \overline{C D}$; in the smaller circle, $\overline{O X} \cong$ OY because they are radii. This means that in the larger circle, $\overline{A B}$ and $\overline{C D}$ are equidistant from the center, making them congruent chords.
46. Connect the intersections with chords of the circle. What type of figure is formed? Verify you conjecture. inscribed regular hexagon
47. Repeat the construction. Connect every other intersection with chords of the circle. What type of figure is formed? Verify your conjecture. inscribed equilateral triangle

COMPUTERS For Exercises 48 and 49, use the following information.
The hard drive of a computer contains platters divided into tracks, which are defined by concentric circles, and sectors, which are defined by radii of the circles.
48. In the diagram of a hard drive platter at the right, what is the relationship between $m \widehat{A B}$ and $m \widehat{C D}$? $m \widehat{A B}=m \widehat{C D}$

49. Are $\widehat{A B}$ and $\widehat{C D}$ congruent? Explain. $N o$; congruent arcs must be in the same circle or congruent circles, but these are in concentric circles.
50. CRITICAL THINKING The figure shows two concentric circles with $\overline{O X} \perp \overline{A B}$ and $\overline{O Y} \perp \overline{C D}$. Write a statement relating $\overline{A B}$ and $\overline{C D}$. Verify your reasoning.

51.

Answer the question that was posed at the beginning of the lesson. See margin.
How do the grooves in a Belgian waffle iron model segments in a circle?
Include the following in your answer:

- a description of how you might find the length of a groove without directly measuring it, and
- a sketch with measurements for a waffle iron that is 8 inches wide.

Standardized
Test Practice
52. Refer to the figure. Which of the following statements is true? C
I. $\overline{D B}$ bisects $\overline{A C}$.
II. $\overline{A C}$ bisects $\overline{D B}$. III.
(B) II and III
(A) I and II
(C) I and III
(D) I, II, and III

53. SHORT RESPONSE According to the 2000 census, the population of Bridgeworth was 204 thousand, and the population of Sutterly was 216 thousand. If the population of each city increased by exactly 20% ten years later, how many more people will live in Sutterly than in Bridgeworth in 2010? 14,400

Maintain Your Skills

Mixed Review In $\odot S, m \angle T S R=42$. Find each measure. (Lesson 10-2)
54. $m \widehat{K T} 138$ 55. $m \widehat{E R T}$ 18056. $m \widehat{K R T} 222$

Refer to \odot. (Lesson 10-1)
57. Name a chord that is not a diameter. $\overline{S U}$
58. If $M D=7$, find RI. 14
59. Name congruent segments in $\odot M$. $\overline{R M}, \overline{A M}, \overline{D M}, \overline{I M}$
 RM, AM, DM, IM

Getting Ready for PREREQUISITE SKILL Solve each equation.

the Next Lesson
60. $\frac{1}{2} x=120240$
61. $\frac{1}{2} x=2550$
62. $2 x=\frac{1}{2}(45+35) 20$
63. $3 x=\frac{1}{2}(120-60) 10$
64. $45=\frac{1}{2}(4 x+30) 15$
65. $90=\frac{1}{2}(6 x+3 x) 20$

Practice Quiz 1

Lessons 10-1 through 10-3
PETS For Exercises 1-6, refer to the front circular edge of the hamster wheel shown at the right. (Lessons 10-1 and 10-2)

1. Name three radii of the wheel. $\overline{B C}, \overline{B D}, \overline{B A}$
2. If $B D=3 x$ and $C B=7 x-3$, find $A C .4 .5$
3. If $m \angle C B D=85$, find $m \widehat{A D}$. 95
4. If $r=3$ inches, find the circumference of circle B to the nearest tenth of an inch. 18.8 in .

5. There are 40 equally-spaced rungs on the wheel. What is the degree measure of an arc connecting two consecutive rungs? 9
6. What is the length of $\widehat{C A D}$ to the nearest tenth if $m \angle A B D=150$ and $r=3$? 17.3 units

Find each measure. (Lesson 10-3)
7. $m \angle C A M 28$
8. $m \overparen{E S} 100$
9. $S C 21$
10. $\times 24$

4 Assess

Open-Ended Assessment

Writing Have students draw three circles on a sheet of paper. Tell students to draw a chord anywhere on the first circle and then construct and label a perpendicular bisector for this chord. For the second circle, have students draw two segments extending from the center of the circle so that the chords perpendicular to these segments are congruent. Ask students to place two chords on the third circle so that their corresponding arcs are congruent. Tell students to write the rule they used from the lesson underneath each figure.

Getting Ready for Lesson 10-4

Prerequisite Skill Students will learn about inscribed angles in Lesson 10-4. They will apply concepts of solving equations to find the measures of inscribed angles. Use Exercises 60-65 to determine your students' familiarity with solving equations.

Assessment Options

Practice Quiz 1 The quiz provides students with a brief review of the concepts and skills in Lessons 10-1 through 10-3.
Lesson numbers are given to the right of the exercises or instruction lines so students can review concepts not yet mastered.

1 Focus

5-Minute Check
 Transparency 10-4 Use as

 a quiz or review of Lesson 10-3 .Mathematical Background notes are available for this lesson on p. 520D.

How
 is a socket like an inscribed polygon?

Ask students:

- Why do you think socket wrenches and nuts have a hexagonal shape? Because a hexagon offers good strength and leverage while still distributing the force applied by the user evenly.
- What are the advantages of the wrench mechanism to which the hexagonal cylinder is attached? This mechanism gives more leverage to the user than just the hexagon itself and allows more maneuverability and flexibility.

Resource Manager

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 559-560
- Skills Practice, p. 561
- Practice, p. 562
- Reading to Learn Mathematics, p. 563
- Enrichment, p. 564
- Assessment, pp. 603, 605

10-4. Inscribed Angles

What You'll Learn

- Find measures of inscribed angles.
- Find measures of angles of inscribed polygons

Vocabulary

intercepted

How $\begin{aligned} & \text { is a socket like an } \\ & \text { inscribed polygon? }\end{aligned}$
A socket is a tool that comes in varying diameters. It is used to tighten or unscrew nuts or bolts. The "hole" in the socket is a hexagon cast in a metal cylinder.

INSCRIBED ANGLES In Lesson 10-3, you learned that a polygon that has its vertices on a circle is called an inscribed polygon. Likewise, an inscribed angle is an angle that has its vertex on the circle and its sides contained in chords of the circle.
3. The measure of an inscribed angle is one-half the measure of its intercepted arc.

4

Geometry Activity

Measure of Inscribed Angles

Model

- Use a compass to draw a circle and label the center W.
- Draw an inscribed angle and label it $X Y Z$.
- Draw $\overline{W X}$ and $\overline{W Z}$.

Analyze

1. Measure $\angle X Y Z$ and $\angle X W Z$. See students' work.
2. Find $m \widehat{X Z}$ and compare it with $m \angle X Y Z . m \widehat{X Z}=2(m \angle X Y Z)$
3. Make a conjecture about the relationship of the measure of an inscribed angle and the measure of its intercepted arc.

This activity suggests the following theorem.

Theorem 10.5

Inscribed Angle Theorem If an angle is inscribed in a circle, then the measure of the angle equals one-half the measure of its intercepted arc (or the measure of the intercepted arc is twice the measure of the inscribed angle).

Example: $m \angle A B C=\frac{1}{2}(m \widehat{A D C})$ or $2(m \angle A B C)=m \widehat{A D C}$

Prerequisite Skills Workbook, pp. 41-42 Teaching Geometry With Manipulatives Masters, pp. 16, 17, 165, 166, 167

Transparencies

5-Minute Check Transparency 10-4
Answer Key Transparencies

- Technology

Interactive Chalkboard

To prove Theorem 10.5, you must consider three cases.

	Case 1	Case 2	Case 3
Model of Angle Inscribed in $\odot \circ$	B		
Location of center of circle	on a side of the angle	in the interior of the angle	in the exterior of the angle

Proof Theorem 10.5 (Case 1)

Study Tip

Using Variables You can also assign a variable to an unknown measure. So, if you let $m \widehat{A D}=x$, the second equation becomes $140+$ $100+x+x=360$, or $240+2 x=360$. This last equation may seem simpler to solve.

Given: $\angle A B C$ inscribed in $\odot D$ and $\overline{A B}$ is a diameter.
Prove: $m \angle A B C=\frac{1}{2} m \widehat{A C}$
Draw $\overline{D C}$ and let $m \angle B=x$.

Proof:

Since $\overline{D B}$ and $\overline{D C}$ are congruent radii, $\triangle B D C$ is isosceles and $\angle B \cong \angle C$. Thus, $m \angle B=m \angle C=x$. By the Exterior Angle Theorem, $m \angle A D C=m \angle B+m \angle C$. So $m \angle A D C=2 x$. From the definition of arc measure, we know that $m \overline{A C}=m \angle A D C$ or $2 x$. Comparing $m \widehat{A C}$ and $m \angle A B C$, we see that $m \widehat{A C}=2(m \angle A B C)$ or that $m \angle A B C=\frac{1}{2} m \widehat{A C}$.

You will prove Cases 2 and 3 of Theorem 10.5 in Exercises 35 and 36 .

Example 1 Measures of Inscribed Angles

In $\odot O, m \widehat{A B}=140, m \widehat{B C}=100$, and $m \widehat{A D}=m \widehat{D C}$.
Find the measures of the numbered angles.
First determine $m \widehat{D C}$ and $m \widehat{A D}$.

$$
\begin{array}{rlrl}
m \widehat{A B}+m \widehat{B C}+m \widehat{D C}+m \widehat{A D} & =360 & & \text { Arc Addition Theorem } \\
140+100+m \widehat{D C}+m \widehat{D C} & =360 & m \widehat{A B}=140, m \widehat{B C}=100, \\
240+2(m \widehat{D C}=m \widehat{A D} & =360 & & \text { Simplify. } \\
2(m \widehat{D C}) & =120 & & \text { Subtract } 240 \text { from each side. } \\
m \widehat{D C} & =60 & & \text { Divide each side by } 2 .
\end{array}
$$

So, $m \widehat{D C}=60$ and $m \widehat{A D}=60$.

$$
\begin{array}{rlrl}
m \angle 1 & =\frac{1}{2} m \widehat{A D} & m \angle 2 & =\frac{1}{2} m \overparen{D C} \\
& =\frac{1}{2}(60) \text { or } 30 & & =\frac{1}{2}(60) \text { or } 30 \\
m \angle 3 & =\frac{1}{2} m \widehat{B C} & m \angle 4 & =\frac{1}{2} m \widehat{A B} \\
& =\frac{1}{2}(100) \text { or } 50 & & =\frac{1}{2}(140) \text { or } 70 \\
m \angle 5 & = & \\
& & & \\
& =\frac{1}{2}(100) \text { or } 50 & &
\end{array}
$$

Geometry Activity

Materials: compass, protractor, straightedge
Have some students start with an acute inscribed angle, some with a right inscribed angle, and some with an obtuse inscribed angle and compare results.
www.geometryonline.com/extra_examples

2 Teach

INSCRIBED ANGLES

In-Class Example

1 In $\odot F, m \widehat{W X}=20, m \widehat{X Y}=40$, $m \widehat{U Z}=108$, and $m \widehat{U W}=$ $m \overline{Y Z}$. Find the measures of the numbered angles.

$m \angle 1=48 ; m \angle 2=20 ; m \angle 3=$ $54 ; m \angle 4=106 ; m \angle 5=54$

Given: $\odot C$ with $Q R \cong G F$ and $\overline{J K} \cong \overline{H G}$
Prove: $\triangle P J K \cong \triangle E H G$

Statement (Reason)

1. $\overline{Q R} \cong \overline{G F}$ and $\overline{J K} \cong \overline{H G}$ (Given)
2. $\widehat{Q R} \cong \widetilde{G F}$ (If two chords are \cong, corr. minor arcs are \cong.)
3. \angle GEF intercepts $\overparen{F G} ; \angle Q P R$ intercepts $\widehat{Q R}$. (Def. of intercepted arc)
4. $\angle G E F \cong \angle Q P R$ (Inscribed 1 s of \cong arcs are \cong.)
5. $\angle P J K \cong \angle E H G$ (Right $\&$ are congruent.)
6. $\triangle P J K \cong \triangle E H G$ (AAS)

3 PROBABILITY Points M and N are on a circle so that $m \overline{M N}=72$. Suppose point L is randomly located on the same circle so that it does not coincide with M or N. What is the probability that $m \angle M L N=144 ? \frac{1}{5}$

Study Tip

Eliminate the Possibilites Think about what would be true if D was on minor $\operatorname{arc} \overparen{A B}$. Then $\angle A D B$ would intercept the major arc. Thus, $m \angle A D B$ would be half of 300 or 150 . This is not the desired angle measure in the problem, so you can eliminate the possibility that D can lie on $A B$.

Theorem 10.6

If two inscribed angles of a circle (or congruent circles) intercept congruent arcs or the same arc, then the angles are congruent.

Abbreviations:

Inscribed \llcorner of $\cong \operatorname{arcs}$ are \cong.
Inscribed \&s of same arc are \cong.

Examples:

$\angle D A C \cong \angle D B C$

$\angle F A E \cong \angle C B D$

$$
\text { You will prove Theorem } 10.6 \text { in Exercise } 37 .
$$

Example 2 Proofs with Inscribed Angles

Given: $\odot P$ with $\overline{C D} \cong \overline{A B}$
Prove: $\triangle A X B \cong \triangle C X D$

Proof:

Statements

1. $\angle D A B$ intercepts $\overparen{D B}$.
$\angle D C B$ intercepts $\widehat{D B}$.
2. $\angle D A B \cong \angle D C B$
3. $\angle 1 \cong \angle 2$
4. $\overline{C D} \cong \overline{A B}$
5. $\triangle A X B \cong \triangle C X D$

Reasons

1. Definition of intercepted arc
2. Inscribed $\angle s$ of same arc are \cong.
3. Vertical \measuredangle are \cong.
4. Given
5. AAS

You can also use the measure of an inscribed angle to determine probability of a point lying on an arc.

Example 3 Inscribed Arcs and Probability

PROBABILITY Points A and B are on a circle so that $m \widehat{A B}=60$. Suppose point D is randomly located on the same circle so that it does not coincide with A or B. What is the probability that $m \angle A D B=30$?
Since the angle measure is half the arc measure, inscribed $\angle A D B$ must intercept $\widehat{A B}$, so D must lie on major $\operatorname{arc} A B$. Draw a figure and label any information you know.

$$
\begin{aligned}
m \widehat{B D A} & =360-m \widehat{A B} \\
& =360-60 \text { or } 300
\end{aligned}
$$

Since $\angle A D B$ must intercept $\widehat{A B}$, the probability that $m \angle A D B=30$ is the same as the probability of D being contained in $B D A$.
The probability that D is located on $\widehat{A D B}$ is $\frac{5}{6}$. So, the probability that $m \angle A D B=30$ is also $\frac{5}{6}$.

Differentiated Instruction

Intrapersonal Select or provide examples that cover each concept in the lesson so that students can sit quietly and work on them at their desks. Ask students to make a note if a particular type of problem gives them difficulty. Encourage students to reread and use the examples and theorems in the book to help them work and understand the problems.

ANGLES OF INSCRIBED POLYGONS

Theorem 10.7

If an inscribed angle intercepts a semicircle, the angle is a right angle.
Example: $\widehat{A D C}$ is a semicircle, so $m \angle A B C=90$.

$$
\text { You will prove Theorem } 10.7 \text { in Exercise } 38 .
$$

Example 4 Angles of an Inscribed Triangle

ALGEBRA Triangles $A B D$ and $A D E$ are inscribed in $\odot F$ with $\widehat{A B} \cong \widehat{B D}$. Find the measure of each numbered angle if $m \angle 1=12 x-8$ and $m \angle 2=3 x+8$.
$A E D$ is a right angle because $\overline{A E D}$ is a semicircle.

$$
\begin{aligned}
m \angle 1+m \angle 2+m \angle A E D & =180 & & \text { Angle Sum Theorem } \\
(12 x-8)+(3 x+8)+90 & =180 & & m \angle 1=12 x-8, m \angle 2=3 x+8, m \angle A E D=90 \\
15 x+90 & =180 & & \text { Simplify. } \\
15 x & =90 & & \text { Subtract } 90 \text { from each side. } \\
x & =6 & & \text { Divide each side by } 15 .
\end{aligned}
$$

Use the value of x to find the measures of $\angle 1$ and $\angle 2$.

$$
\begin{array}{rlrlrl}
m \angle 1 & =12 x-8 & & \text { Given } & m \angle 2 & =3 x+8 \\
& =12(6)-8 & x=6 & & \text { Given } \\
& =64 & & \text { Simplify. } & & =26
\end{array}
$$

Angle $A B D$ is a right angle because it intercepts a semicircle.
Because $\widehat{A B} \cong \widehat{B D}, \overline{A B} \cong \overline{B D}$, which leads to $\angle 3 \cong \angle 4$. Thus, $m \angle 3=m \angle 4$.

$$
\begin{aligned}
m \angle 3+m \angle 4+m \angle A B D & =180 & & \text { Angle Sum Theorem } \\
m \angle 3+m \angle 3+90 & =180 & & m \angle 3=m \angle 4, m \angle A B D=90 \\
2(m \angle 3)+90 & =180 & & \text { Simplify. } \\
2(m \angle 3) & =90 & & \text { Subtract } 90 \text { from each side. } \\
m \angle 3 & =45 & & \text { Divide each side by } 2 .
\end{aligned}
$$

Since $m \angle 3=m \angle 4, m \angle 4=45$.

Example 5 Angles of an Inscribed Quadrilateral
 Quadrilateral $A B C D$ is inscribed in $\odot P$. If $m \angle B=80$ and $m \angle C=40$, find $m \angle A$ and $m \angle D$.
 Draw a sketch of this situation.
 To find $m \angle A$, we need to know $m \widehat{B C D}$.
 To find $m \widehat{B C D}$, first find $m \widehat{D A B}$.
 $m \widehat{D A B}=2(m \angle C) \quad$ Inscribed Angle Theorem

$$
=2(40) \text { or } 80 \quad m \angle C=40
$$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of
the vocabulary terms to their Vocabulary Builder worksheets for Chapter 10.
- include a definition/example for an inscribed angle.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

Answers

1. Sample answer:

2. The measures of an inscribed angle and a central angle for the same intercepted arc can be calculated using the measure of the arc. However, the measure of the central angle equals the measure of the arc, while the measure of the inscribed angle is half the measure of the arc.
3. Given: Quadrilateral $A B C D$ is inscribed in $\odot P$.
$m \angle C=\frac{1}{2} m \angle B$
Prove: $m \widehat{C D A}=2(m \widehat{D A B})$

Proof: Given $m \angle C=\frac{1}{2}(m \angle B)$ means that $m \angle B=2(m \angle C)$. Since $m \angle B=\frac{1}{2}(m \overline{C D A})$ and $m \angle C=\frac{1}{2}\left(\frac{2}{D A B}\right)$, the equation becomes $\frac{1}{2}(m \widehat{C D A})=2\left[\frac{1}{2}(m \widehat{D A B})\right]$. Multiplying each side by 2 results in $m \widehat{C D A}=2(m \widehat{D A B})$.

$$
\begin{aligned}
m \widehat{B C D}+m \widehat{D A B} & =360 & & \text { Sum of angles in circle }=360 \\
m \widehat{B C D}+80 & =360 & & m \widehat{D A B}=80 \\
m \widehat{B C D} & =280 & & \text { Subtract } 80 \text { from each side. } \\
m \widehat{B C D} & =2(m \angle A) & & \text { Inscribed Angle Theorem } \\
280 & =2(m \angle A) & & \text { Substitution } \\
140 & =m \angle A & & \text { Divide each side by } 2 .
\end{aligned}
$$

To find $m \angle D$, we need to know $m \widehat{A B C}$, but first we must find $m \widehat{A D C}$.

$$
\begin{aligned}
m \widehat{A D C} & =2(m \angle B) & & \text { Inscribed Angle Theorem } \\
m \widehat{A D C} & =2(80) \text { or } 160 & & m \angle B=80 \\
m \widehat{A B C}+m \widehat{A D C} & =360 & & \text { Sum of angles in circle }=360 \\
m \widehat{A B C}+160 & =360 & & m \widehat{A D C}=160 \\
m \widehat{A B C} & =200 & & \text { Subtract } 160 \text { from each side. } \\
m \widehat{A B C} & =2(m \angle D) & & \text { Inscribed Angle Theorem } \\
200 & =2(m \angle D) & & \text { Substitution } \\
100 & =m \angle D & & \text { Divide each side by } 2 .
\end{aligned}
$$

In Example 5, note that the opposite angles of the quadrilateral are supplementary. This is stated in Theorem 10.8 and can be verified by considering that the arcs intercepted by opposite angles of an inscribed quadrilateral form a circle.

Theorem 10.8

If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Example:

Quadrilateral $A B C D$ is inscribed in $\odot P$.
$\angle A$ and $\angle C$ are supplementary.
$\angle B$ and $\angle D$ are supplementary.

You will prove this theorem in Exercise 39.

Check for Understanding

Concept Check 1. OPEN ENDED Draw a counterexample of an inscribed trapezoid. If possible,

 include at least one angle that is an inscribed angle. 1-2. See margin.2. Compare and contrast an inscribed angle and a central angle that intercepts the same arc.

Guided Practice
3. In $\odot R, m \widehat{M N}=120$ and $m \overline{M Q}=60$. Find the measure of each numbered angle.
$m \angle 1=30, m \angle 2=60, m \angle 3=60, m \angle 4=30$, $m \angle 5=30, m \angle 6=60, m \angle 7=60, m \angle 8=30$
4. PROOF Write a paragraph proof. See margin.
 Given: Quadrilateral $A B C D$ is inscribed in $\odot P$.

$$
m \angle C=\frac{1}{2} m \angle B
$$

Prove: $m \overline{C D A}=2(m \widehat{D A B})$

5. $m \angle 1=35$,
$m \angle 2=55$,
$m \angle 3=39$,
$m \angle 4=39$
5. ALGEBRA In $\odot A$ at the right $\widehat{P Q} \cong \overparen{R S}$. Find the measure of each numbered angle if $m \angle 1=6 x+11$, $m \angle 2=9 x+19, m \angle 3=4 y-25$, and $m \angle 4=3 y-9$.
6. Suppose quadrilateral $V W X Y$ is inscribed in $\odot C$. If $m \angle X=28$ and $m \angle W=110$, find $m \angle V$ and $m \angle Y$. 152, 70

Application
7. PROBABILITY Points X and Y are endpoints of a diameter of $\odot W$. Point Z is another point on the circle. Find the probability that $\angle X Z Y$ is a right angle. 1

太 indicates increased difficulty

Practice and Apply

Homurwork Help	
$\begin{gathered} \text { For } \\ \text { Exercises } \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Examples } \end{gathered}$
8-10	1
$\begin{aligned} & 11-12, \\ & 35-39 \end{aligned}$	2
13-17	4
$\begin{aligned} & 18-21, \\ & 26-29 \end{aligned}$	5
31-34	3
Extra Practice See page 774 .	

8. $m \angle 1=60$,
$m \angle 2=22.5, m \angle 3=$ $37.5, m \angle 4=60$, $m \angle 5=22.5, m \angle 6=$ $60, m \angle 7=37.5$, $m \angle 8=60$
9. $m \angle 1=m \angle 2=$ $50, m \angle 3=40$, $m \angle 4=50, m \angle 5=$ $40, m \angle 6=50$, $m \angle 7=100, m \angle 8=$ $m \angle 9=m \angle 10=$ $m \angle 11=40$

Find the measure of each numbered angle for each figure.
8. $\overline{P Q} \cong \overline{R Q}, m \overparen{P S}=45$, and $m \widehat{S R}=75$

9. $m \angle B D C=25$, $m \widehat{A B}=120$, and $m \overline{C D}=130$

$$
m \angle 1=m \angle 2=30, m \angle 3=25
$$

PROOF Write a two-column proof. 11-12. See margin.
11. Given: $\widehat{A B} \cong \widehat{D E}, \widehat{A C} \cong \widehat{C E}$
12. Given: $\odot P$

Prove: $\triangle A B C \cong \triangle E D C$ Prove: $\triangle A X B \sim \triangle C X D$

ALGEBRA Find the measure of each numbered angle for each figure.
$\begin{array}{ll}\text { 13. } m \angle 1=x, m \angle 2=2 x-13 & \text { 14. } m \widehat{A B}=120\end{array}$
15. $m \angle R=\frac{1}{3} x+5$,

$m \angle 1=m \angle 2=13$

$m \angle 1=m \angle 2=30$,
$m \angle 3=60, m \angle 4=30$, $m \angle 5=m \angle 6=60$, $m \angle 7=30, m \angle 8=60$
16. $P Q R S$ is a rhombus inscribed in a circle. Find $m \angle Q R P$ and $m \widehat{S P}$. 45; 90
\star 17. In $\odot D, \overline{D E} \cong \overline{E C}, m \widetilde{C F}=60$, and $\overline{D E} \perp \overline{E C}$. Find $m \angle 4, m \angle 5$, and $m \widehat{A F}$. 45, 30, 120

Lesson 10-4 Inscribed Angles 549
12. Given: $\odot P$

Prove: $\triangle A X B \sim \triangle C X D$

Proof:
Statements (Reasons)

1. $\odot P$ (Given)
2. $\angle A \cong \angle C$ (Inscribed \triangle intercepting same arc are \cong.)
3. $\angle 1 \cong \angle 2$ (Vertical $\angle \mathrm{s}$ are \cong.)
4. $\triangle A X B \sim \triangle C X D$ (AA Similarity)

About the Exercises...

Organization by Objective

- Inscribed Angles: 8-12, 31-39
- Angles of Inscribed Polygons: 13-21, 26-29

Odd/Even Assignments

Exercises 8-15, 22-29 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 9-15 odd, 19-27 odd, 31-43 odd, 44-58
Average: 9-43 odd, 44-58
Advanced: 8-42 even, 44-55
(optional: 56-58)

Answers

11. Given: $\overparen{A B} \cong \overparen{D E}, \overparen{A C} \cong \overparen{C E}$

Prove: $\triangle A B C \cong \triangle E D C$

Proof:
Statements (Reasons)

1. $\widehat{A B} \cong \widehat{D E}, \widehat{A C} \cong \widehat{C E}$ (Given)
2. $m \widehat{A B}=m \widehat{D E}, m \widehat{A C}=m \widehat{C E}$
(Def. of \cong arcs)
3. $\frac{1}{2} m \widehat{A B}=\frac{1}{2} m \overparen{D E}$, $\frac{1}{2} m \widehat{A C}=\frac{1}{2} m \widehat{C E}$ (Mult. Prop.)
4. $m \angle A C B=\frac{1}{2} m \widehat{A B}, m \angle E C D=$ $\frac{1}{2} m \overparen{D E}, m \angle 1=\frac{1}{2} m \overparen{A C}, m \angle 2=$ $\frac{1}{2} m \overparen{C E}$ (Inscribed \angle Theorem)
5. $m \angle A C B=m \angle E C D$, $m \angle 1=m \angle 2$ (Substitution)
6. $\angle A C B \cong \angle E C D, \angle 1 \cong \angle 2$ (Def. of \cong /s)
7. $\overline{A B} \cong \overline{D E}$ (\cong arcs have \cong chords.)
8. $\triangle A B C \cong \triangle E D C$ (AAS)

9. Quadrilateral $W R T Z$ is inscribed in a circle. If $m \angle W=45$ and $m \angle R=100$, find $m \angle T$ and $m \angle Z .135,80$
10. Trapezoid $A B C D$ is inscribed in a circle. If $m \angle A=60$, find $m \angle B, m \angle C$, and $m \angle D$. $m \angle B=120, m \angle C=120, m \angle D=60$
11. Rectangle $P D Q T$ is inscribed in a circle. What can you conclude about $\overline{P Q}$? Sample answer: $\overline{P Q}$ is a diagonal of $P D Q T$ and a diameter of the circle.
12. Square $E D F G$ is inscribed in a circle. What can you conclude about $\overline{E F}$? Sample answer: $\overline{E F}$ is a diameter of the circle and a diagonal and angle bisector of $E D F G$.

Equilateral pentagon $P Q R S T$ is inscribed in $\odot U$. Find each measure.
22. $m \widehat{Q R} 72$
23. $m \angle P S R 72$
24. $m \angle P Q R 108$
25. $m \overparen{P T S} 144$

Quadrilateral $A B C D$ is inscribed in $\odot Z$ such that $m \angle B Z A=104, m \widehat{C B}=94$, and $\overline{A B} \| \overline{D C}$. Find each measure.
26. $m \overparen{B A} 104$
27. $m \widehat{A D C} 162$
\star 28. $m \angle B D A 52$

* 29. $m \angle Z A C 9$

30. SCHOOL RINGS Some designs of class rings involve adding gold or silver to the surface of the round stone. The design at the right includes two inscribed angles. If $m \angle A B C=50$ and $m \widehat{D B F}=128$, find $m \widehat{A C}$ and $m \angle D E F$. 100, 64
More About. . . Point T is randomly selected on $\odot C$ so that it does not coincide with points P, Q, R, or $S . \overline{S Q}$ is a diameter of $\odot C$.
31. Find the probability that $m \angle P T S=20$ if $m \widehat{P S}=40 . \frac{8}{9}$
32. Find the probability that $m \angle P T R=55$ if $m \overparen{P S R}=110$. $\frac{2}{3}$

33. Find the probability that $m \angle S T Q=90$. 1

$\frac{25}{36}$
34. Find the probability that $m \angle P T Q=180$. 0

PROOF Write the indicated proof for each theorem. 35-39. See pp. 589A-589B.
35. two-column proof:

Case 2 of Theorem 10.5
Given: T lies inside $\angle P R Q$. $\overline{R K}$ is a diameter of $\odot T$.
Prove: $m \angle P R Q=\frac{1}{2} m \widehat{P K Q}$

37. two-column proof: Theorem 10.6
36. two-column proof:

Case 3 of Theorem 10.5
Given: T lies outside $\angle P R Q$. $\overline{R K}$ is a diameter of $\odot T$.
Prove: $m \angle P R Q=\frac{1}{2} m \widehat{P Q}$

39. paragraph proof: Theorem 10.8

550 Chapter 10 Circles Aaron Happt

550 Chapter 10 Circles

STAINED GLASS In the stained glass window design, all of the small arcs around the circle are congruent. Suppose the center of the circle is point O.
40. What is the measure of each of the small arcs? 45
41. What kind of figure is $\triangle A O C$? Explain.
42. What kind of figure is quadrilateral $B D F H$? Explain. square
43. What kind of figure is quadrilateral ACEG? Explain. square

44. CRITICAL THINKING A trapezoid $A B C D$ is inscribed in $\odot O$. Explain how you can verify that $A B C D$ must be an isosceles trapezoid. See margin.
45.

WRITING IN MATH
Answer the question that was posed at the beginning of the lesson. See margin.
How is a socket like an inscribed polygon?
Include the following in your answer:

- a definition of an inscribed polygon, and
- the side length of a regular hexagon inscribed in a circle $\frac{3}{4}$ inch wide.

Standardized
Test Practice
(A) (B) C C
46. What is the ratio of the measure of $\angle A C B$ to the measure of $\angle A O B$? C
(A) $1: 1$
(C) $1: 2$
(B) $2: 1$
(D) not enough information

47. GRID IN The daily newspaper always follows a particular format. Each evennumbered page contains six articles, and each odd-numbered page contains seven articles. If today's paper has 36 pages, how many articles does it contain? 234

Maintain Your Skills

Mixed Review Find each measure. (Lesson 10-3)
49. $\sqrt{135} \approx 11.62$
48. If $A B=60$ and $D E=48$, find $C F$. 18
49. If $A B=32$ and $F C=11$, find $F E$.
50. If $D E=60$ and $F C=16$, find $A B .68$

Points Q and R lie on $\odot P$. Find the length of $\widehat{Q R}$
for the given radius and angle measure. (Lesson 10-2)
51. $P R=12$, and $m \angle Q P R=604 \pi$ units 52. $m \angle Q P R=90, P R=168 \pi$ units

Complete each sentence with sometimes, always, or never. (Lesson 4-1)
53. Equilateral triangles are ? isosceles. always
54. Acute triangles are ? equilateral. sometimes
55. Obtuse triangles are ? scalene. sometimes

Getting Ready for
 PREREQUISITE SKILL Determine whether each figure is a right triangle.

 the Next Lesson(To review the Pythagorean Theorem, see Lesson 7-2.)
56.

57.

58.

www.geometryonline.com/self_check_quiz
Lesson 10-4 Inscribed Angles 551

[^1]
4 Assess

Open-Ended Assessment

Modeling Use a cork board, pushpins, a cutout circle, and a flexible rubber band to model inscribed angles. Place the circle on the cork board and put two pushpins on the circle to represent the points of an intercepted arc. Wrap the rubber band around the pins and use a pencil to drag the rubber band to the opposite end of the circle to represent the vertex of the inscribed angle. Students can move the pencil along the circle and use a protractor to note that the measure of the angle stays the same.

Getting Ready for Lesson 10-5

Prerequisite Skill Students will learn about tangents in Lesson 10-5. They will apply the Pythagorean Theorem to determine if segments are tangents and find lengths. Use Exercises 56-58 to determine your students' familiarity with the Pythagorean Theorem.

Assessment Options

Quiz (Lessons 10-3 and 10-4)
is available on p. 603 of the Chapter 10 Resource Masters.
Mid-Chapter Test (Lessons 10-1 through 10-4) is available on p. 605 of the Chapter 11 Resource Masters.
45. Sample answer: The socket is similar to an inscribed polygon because the vertices of the hexagon can be placed on a circle that is concentric with the outer circle of the socket. Answers should include the following.

- An inscribed polygon is one in which all of its vertices are points on a circle.
- The side of the regular hexagon inscribed in a circle $\frac{3}{4}$ inch wide is $\frac{3}{8}$ inch.

1 Focus

5-Minute Check
Transparency 10-5 Use as a quiz or review of Lesson 10-4.

Mathematical Background notes are available for this lesson on p. 520D.

How

 are tangents related to track and field events?
Ask students:

- What does tangent mean? Where have you heard the word used? Accept all reasonable answers that suggest tangent means touching.
- What other situations can be modeled by a circle and a tangent? Sample answers: fishing line unrolling from a spool, the string of a yo-yo, a line of paint being applied to a wall by a roller

Resource Manager

Vocabulary

tangent
point of tangency

Study Tip

Tangent Lines All of the theorems applying to tangent lines also apply to parts of the line that are tangent to the circle.
5. Sample answer: The shortest distance from the center of a circle to the tangent is the radius of the circle, which is perpendicular to the tangent.

Andy Lyons/Getty Images

What You'll Learn

- Use properties of tangents.
- Solve problems involving circumscribed polygons

How are tangents related to track and field events?

In July 2001, Yipsi Moreno of Cuba won her first major title in the hammer throw at the World Athletic Championships in Edmonton, Alberta, Canada, with a throw of 70.65 meters. The hammer is a metal ball, usually weighing 16 pounds, attached to a steel wire at the end of which is a grip. The ball is spun around by the thrower and then released, with the greatest distance thrown winning the event.

TANGENTS The figure models the hammer throw event. Circle A represents the circular area containing the spinning thrower. Ray $B C$ represents the path the hammer takes when released. $\overrightarrow{B C}$ is tangent to $\odot A$, because the line containing $\overrightarrow{B C}$ intersects the circle in exactly one point. This point is called the point of tangency.

2. Measure $\overline{W Y}$ and $\overline{W X}$. Write a statement to relate $W X$ and $W Y . W X<W Y$
3. Move point Y along the tangent. How does the location of Y affect the statement you wrote in Exercise 2? It doesn't, unless Y and X coincide.
4. Measure $\angle W X Y$. What conclusion can you make? $\overline{W X} \perp \overline{X Y}$
5. Make a conjecture about the shortest distance from the center of the circle to a tangent of the circle.

This investigation suggests an indirect proof of Theorem 10.9.

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 565-566
- Skills Practice, p. 567
- Practice, p. 568
- Reading to Learn Mathematics, p. 569
- Enrichment, p. 570

Graphing Calculator and

 Computer Masters, pp. 35, 36School-to-Career Masters, p. 20
Prerequisite Skills Workbook, pp. 15-16
Teaching Geometry With Manipulatives
Masters, pp. 17, 170, 171, 173

Transparencies

5-Minute Check Transparency 10-5
Answer Key Transparencies

[^2]
Theorem 10.9

If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.
Example: If $\overleftrightarrow{R T}$ is a tangent, $\overrightarrow{O R} \perp \overleftrightarrow{R T}$.

Example 1 Find Lengths

ALGEBRA $\overline{E D}$ is tangent to $\odot F$ at point E. Find x.
Because the radius is perpendicular to the tangent at the point of tangency, $\overline{E F} \perp \overline{D E}$. This makes $\angle D E F$ a right angle and $\triangle D E F$ a right triangle. Use the Pythagorean Theorem to find x.

$$
\begin{aligned}
(E F)^{2}+(D E)^{2} & =(D F)^{2} & & \text { Pythagorean Theorem } \\
3^{2}+4^{2} & =x^{2} & & E F=3, D E=4, D F=x \\
25 & =x^{2} & & \text { Simplify. } \\
\pm 5 & =x & & \text { Take the square root of each side. }
\end{aligned}
$$

Because x is the length of $\overline{D F}$, ignore the negative result. Thus, $x=5$.

The converse of Theorem 10.9 is also true.

Theorem 10.10

If a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.
Example: If $\overrightarrow{O R} \perp \overleftrightarrow{R T}, \overleftrightarrow{R T}$ is a tangent.

You will prove this theorem in Exercise 22.

Example 2 Identify Tangents

a. Determine whether $\overline{M N}$ is tangent to $\odot L$.

First determine whether $\triangle L M N$ is a right triangle
by using the converse of the Pythagorean Theorem.
$(L M)^{2}+(M N)^{2} \stackrel{?}{=}(L N)^{2}$ Converse of Pythagorean Theorem

$$
\begin{aligned}
3^{2}+4^{2} & \stackrel{?}{=} 5^{2} & & L M=3, M N=4, L N=3+2 \text { or } 5 \\
25 & =25 \checkmark & & \text { Simplify. }
\end{aligned}
$$

Because the converse of the Pythagorean Theorem is true, $\triangle L M N$ is a right triangle and $\angle L M N$ is a right angle. Thus, $\overline{L M} \perp \overline{M N}$, making $\overline{M N}$ a tangent to $\odot L$.
b. Determine whether $\overline{P Q}$ is tangent to $\odot R$.

Since $R Q=R S, R P=4+4$ or 8 units.
$(R Q)^{2}+(P Q)^{2} \stackrel{?}{=}(R P)^{2} \quad$ Converse of Pythagorean Theorem

$$
4^{2}+5^{2} \stackrel{?}{\underline{?}} 8^{2} \quad R Q=4, P Q=5, R P=8
$$

$41 \neq 64$
Simplify.

Because the converse of the Pythagorean Theorem did not prove true in this case, $\triangle R Q P$ is not a right triangle.
So, $\overline{P Q}$ is not tangent to $\odot R$.

2 Teach

TANGENTS

In-Class Examples

Power
 Point ${ }^{\circledR}$

Teaching Tip Explain that even though a tangent intersects a circle, there is never any part of a tangent contained inside a circle. The only point that the tangent and the circle have in common is the point of intersection.

ALGEBRA $\overline{R S}$ is tangent to $\odot Q$ at point R. Find y. 24

a. Determine whether $\overline{B C}$ is tangent to $\odot A$. no
b. Determine whether $\overline{W E}$ is tangent to $\odot D$. yes

Study Tip

Identifying
Tangents
Never assume that a segment is tangent to a circle by appearance unless told otherwise. The figure must either have a right angle symbol or include the measurements that confirm a right angle.
\qquad ,

3 ALGEBRA Find x. Assume that segments that appear tangent to circles are tangent.

More than one line can be tangent to the same circle. In the figure, $A B$ and $B C$ are tangent to $\odot D$. So, $(A B)^{2}+(A D)^{2}=(D B)^{2}$ and $(B C)^{2}+(C D)^{2}=(D B)^{2}$.

$$
\begin{aligned}
(A B)^{2}+(A D)^{2} & =(B C)^{2}+(C D)^{2} & & \text { Substitution } \\
(A B)^{2}+(A D)^{2} & =(B C)^{2}+(A D)^{2} & & A D=C D \\
(A B)^{2} & =(B C)^{2} & & \text { Subtract }(A D)^{2} \text { from each side. } \\
A B & =B C & & \text { Take the square root of each side. }
\end{aligned}
$$

The last statement implies that $\overline{A B} \cong \overline{B C}$. This is a proof of Theorem 10.10 .

Theorem 10.11

If two segments from the same exterior point are tangent to a circle, then they are congruent.
Example: $\overline{A B} \cong \overline{A C}$

You will prove this theorem in Exercise 27.

Example 3 Solve a Problem Involving Tangents

ALGEBRA Find x. Assume that segments that appear tangent to circles are tangent.
$\overline{A D}$ and $\overline{A C}$ are drawn from the same exterior point and are tangent to $\odot Q$, so $\overline{A D} \cong \overline{A C} . \overline{A C}$ and $\overline{A B}$ are drawn from the same exterior point and are tangent to $\odot R$, so $\overline{A C} \cong \overline{A B}$. By the Transitive Property, $\overline{A D} \cong \overline{A B}$.

$$
A D=A B \quad \text { Definition of congruent segments }
$$

$$
\begin{aligned}
6 x+5 & =-2 x+37 & & \text { Substitution } \\
8 x+5 & =37 & & \text { Add } 2 x \text { to each side. } \\
8 x & =32 & & \text { Subtract } 5 \text { from each side. } \\
x & =4 & & \text { Divide each side by } 8 .
\end{aligned}
$$

Construction

Line Tangent to a Circle Through a Point Exterior to the Circle

Construct a circle. Label the center C. Draw a point outside $\odot C$. Then draw $\overline{C A}$.

Construct the perpendicular bisector of $\overline{C A}$ and label it line ℓ. Label the intersection of ℓ and $\overline{C A}$ as point X.

Construct circle X with radius $X C$. Label the points where the circles intersect as D and E.

Draw $\overleftrightarrow{A D} \cdot \triangle A D C$ is inscribed in a semicircle. So $\angle A D C$ is a right angle, and $\overparen{A D}$ is a tangent.

You will construct a line tangent to a circle through a point on the circle in Exercise 21.

D A \| L Y

INIERVENTION

Differentiated Instruction

Kinesthetic Have students place a compact disc on a sheet of blank paper and trace around it. Then have students place two metric rulers beside the disc to model two tangents. Have students arrange the rulers so that they form two tangents that intersect on the sheet. Then have students lightly draw the two tangents from the circle to the point of intersection and measure the distance from the circle to the point of intersection to confirm that the measures are equal.

Study Tip
Common Misconceptions Just because the circle is tangent to one or more of the sides of a polygon does not mean that the polygon is circumscribed about the circle, as shown in the second pair of figures.

CIRCUMSCRIBED POLYGONS
In Lesson 10-3, you learned that circles can be circumscribed about a polygon. Likewise, polygons can be circumscribed about a circle, or the circle is inscribed in the polygon. Notice that the vertices of the polygon do not lie on the circle, but every side of the polygon is tangent to the circle.

Example 4 Triangles Circumscribed About a Circle

Triangle $A D C$ is circumscribed about $\odot O$. Find the perimeter of $\triangle A D C$ if $E C=D E+A F$.
Use Theorem 10.10 to determine the equal measures. $A B=A F=19, F D=D E=6$, and $E C=C B$.
We are given that $E C=D E+A F$, so $E C=6+19$ or 25 .

$$
\begin{aligned}
P & =A B+B C+E C+D E+F D+A F & & \text { Definition of perimeter } \\
& =19+25+25+6+6+19 \text { or } 100 & & \text { Substitution }
\end{aligned}
$$

The perimeter of $\triangle A D C$ is 100 units.

Check for Understanding

Concept Check 1. Determine the number of tangents that can be drawn to a circle for each point. Explain your reasoning. See margin for reasoning.
a. containing a point outside the circle two
b. containing a point inside the circle none
c. containing a point on the circle one
2. Write an argument to support or provide a counterexample to the statement If two lines are tangent to the same circle, they intersect.
3. OPEN ENDED Draw an example of a circumscribed polygon and an example of an inscribed polygon. See margin.
parallel and thus, not intersecting.

For Exercises 4 and 5, use the figure at the right.
4. Tangent $\overline{M P}$ is drawn to $\odot O$. Find x if $M O=20$. 12
5. If $R O=13$, determine whether $\overline{P R}$ is tangent to $\odot O$. Yes; $5^{2}+12^{2}=13^{2}$.

6. Rhombus $A B C D$ is circumscribed about $\odot P$ and has a perimeter of 32 . Find x. 5

Application 7. AGRICULTURE A pivot-circle irrigation system waters part of a fenced square field. If the spray extends to a distance of 72 feet, what is the total length of the fence around the field? 576 ft

CIRCUMSCRIBED POLYGONS

In-Class Example

4 Triangle $H J K$ is circumscribed about $\odot G$. Find the perimeter of $\triangle H J K$ if $N K=J L+29$.

158 units

Answers

1a. From any point outside the circle, you can draw only two tangents.
1b. A line containing a point inside the circle would intersect the circle in two points. A tangent can only intersect a circle in one point.
1c. Since a tangent intersects a circle in exactly one point, there is one tangent containing a point on the circle.
3. Sample answer:

polygon	polygon
circumscribed	inscribed
about a circle:	in a circle:

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 10.
- include an example of a circumscribed polygon and an example that demonstrates how to use tangents to find segment lengths.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises.. Organization by Objective
 - Tangents: 8-20
 - Circumscribed Polygons: 17-18

Odd/Even Assignments

Exercises 8-20, 23-26 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercise 21 requires a compass and straightedge.

Assignment Guide

Basic: 9-17 odd, 21-31 odd, 32-34 (optional: 35-36), 37-45
Average: 9-31 odd, 32-34
(optional: 35-36), 37-45
Advanced: 8-30 even, 31-41 (optional: 42-45)

Determine whether each segment is tangent to the given circle.
8. $\overline{B C}$

9. $\overline{D E}$

10. $\overline{G H}$

11. $\overline{K L}$

Find x. Assume that segments that appear to be tangent are tangent.
12. 8

13. 16

15. 15

16. 16

17. $3 K$

${ }_{\star}^{\text {20. }} E_{12}^{16} \underbrace{4 \frac{2}{3}}$

Study Tip

LOOK Back
To review constructing perpendiculars to a line, see Lesson 3-6.
21. CONSTRUCTION Construct a line tangent to a circle through a point on the circle following these steps. See students' work.

- Construct a circle with center T.
- Locate a point P on $\odot T$ and draw $\overrightarrow{T P}$.
- Construct a perpendicular to $\overrightarrow{T P}$ through point P.

22. PROOF Write an indirect proof of Theorem 10.10 by assuming that ℓ is not tangent to $\odot A$.
Given: $\ell \perp \overline{A B}, \overline{A B}$ is a radius of $\odot A$.
Prove: Line ℓ is tangent to $\odot A$. See margin.

556 Chapter 10 Circles

Answer

22. Given: $\frac{\ell \perp}{\overline{A B}}$ is a radius of $\odot A$.

Prove: ℓ is tangent to $\odot A$.

Proof: Assume ℓ is not tangent to $\odot A$. Since ℓ intersects $\odot A$ at B, it must intersect the circle in another place. Call this point C. Then $A B=A C$. But if $\overline{A B} \perp \ell$, then $\overline{A B}$ must be the shortest segment from A to ℓ. If $A B=A C$, then $\overline{A C}$ is the shortest segment from A to ℓ. Since B and C are two different points on ℓ, this is a contradiction. Therefore, ℓ is tangent to $\odot A$.

Find the perimeter of each polygon for the given information.
23.

60 units
25. $B Y=C Z=A X=2.5$ diameter of $\odot G=5$ $15 \sqrt{3}$ units

24. $S T=18$, radius of $\odot P=558.5$ units

$\star 26 . C F=6(3-x), D B=12 y-436$ units

27. PROOF Write a two-column proof to show that if two segments from the same exterior point are tangent to a circle, then they are congruent. (Theorem 10.11) See p. 589B.
28. PHOTOGRAPHY The film in a $35-\mathrm{mm}$ camera unrolls from a cylinder, travels across an opening for exposure, and

More About.

Astronomy

During the 20th century, there were 78 total solar eclipses, but only 15 of these affected parts of the United States. The next total solar eclipse visible in the U.S. will be in 2017. Source: World Almanac then is forwarded into another circular chamber as each photograph is taken. The roll of film has a diameter of 25 millimeters, and the distance from
 the center of the roll to the intake of the chamber is 100 millimeters. To the nearest millimeter, how much of the film would be exposed if the camera were opened before the roll had been totally used? 99 mm

ASTRONOMY For Exercises 29 and 30, use the following information. A solar eclipse occurs when the moon blocks the sun's rays from hitting Earth. Some areas of the world will experience a total eclipse, others a partial eclipse, and some no eclipse at all, as shown in the diagram below.

29. The blue section denotes a total eclipse on that part of Earth. Which tangents define the blue area? $\overline{A E}$ and $\overline{B F}$
30. The pink areas denote the portion of Earth that will have a partial eclipse. Which tangents define the northern and southern boundaries of the partial eclipse? $\overline{A D}$ and $\overline{B C}$
31. CRITICAL THINKING Find the measure of tangent $\overline{G N}$. Explain your reasoning. See p. 589B.

wwww.geometryonline.com/self_check_quiz
Lesson 10-5 Tangents 557 Ray MasseyGGetty Images

Enrichment, p. 570

Tangent Circles

Two circles in the same if they have exactly one eplane are tang tangent circles
circles with no comgent
common interior points are externally tangent. If tangent circles have common interior points, then they are internally tangent. Three or
more circles are mutually tangent if each pair of more circles are mu

1. Make sketches to dow all

Study Guide and Intervention, p. 565 (shown) and p. 566

Tangents A tangent to a circle intersects the circle in exacty one point, called the point of tangency. There are three inportant relationships involvin tane
 exactly one point, called the point of tangene three important relationships involving tangent

- If a line is tangent to a circle, then it is per
the radius drawn to the point of tangency.
-If radius drawn to the point of tangency.
end lineint onpendicular to a thadius of a circle at its
encle then the line is a tangent to the
- If a line is perpendicular to a radius of a circle at its
endpoint on the circle, then the line is a tangent to the
circle.
enipoint on the circle, then the ine is a tangent to the
circle.
If two segments from the same exterior point are tangent
If two segments from the same exteri
to a circle, then they are congruent.

tangent.

CLOCKS For
information.
The desimation. shown in the 7 and 8 , use the following The design shown in the figure is that of a circular clock
face inscribed in a triangular base. $A F$ and $F C$ are equal. 7. Find $A B$. 9.5 in.
\qquad

Reading to Learn

Mathematics, p. 569

ELL
Pre-Activity How are tangents related to track and field events? Read the introduction to Lesson $10-5$ at the top of page 552 in your textbook How is the hammer throw event related to the mathematical concept of a How is the ham
tangent line?
Sample answer: When the hammer is released, its initial path is a good approximation of a tangent line to the circular path
around which it was traveling just before it was released.

Reading the Lesson

1. Refer to the figure. Name each of the following in the figure
a. two lines that are tangent to $\odot P \overleftrightarrow{R Q}$ and $\overleftrightarrow{R S}$
b. two points of tangency Q, S
c. two chords of the circle $\overline{U Q}$ and $\overline{U S}$
d. three radii of the circle $\overline{P Q}, \overline{P S}$, and $\overline{P T}$
e. two right angles $\angle P Q R$ and $\angle P S R$
f. two congruent right triangles $\triangle P Q R$ and $\triangle P S R$
g. the hypotenuse or hypotenuses in the two congruent right triangles $\overline{P R}$
h. two congruent central angles $\angle Q P T$ and $\angle S P T$
i. two congruent minor arcs $\overline{Q T}$ and $\widehat{S T}$
j. an inscribed angle $\angle Q U S$
2. Explain the difference between an inscribed polygon and a circumscribed polygon. Use the words $v e r t e x$ and tangent in your explanation.
Sample answer: If a polygon is inscribed in a circle, every vertex of the polygon lies on the circle. if a polygon it circums,
every side of the polygon is tangent to the circle.

Helping You Remember

3. A good way to remember a mathematical term is to relate it to a word or expression th is used in a nonmathematical way. Sometimes a word or expression used in English is
derived from a mathematical term. What does it mean to "go of on a tangent," and how is this meaning related to the geometric idea of a tangent line? Sample answer: To "go off on a tangent" means to suddenly change the
subject when you are talking or writing. You can visualize this as being sube a tangent line "going off" from a circle as you go farther from the
like
point of point of tangency.

4 Assess

Open-Ended Assessment

Writing Provide an example on the board with a triangle formed by a tangent, a radius, and the line from the center of the circle to a point on the tangent. Assign lengths to the figure and ask students to write the equation necessary to solve the problem. Have a volunteer write his or her equation on the board, and allow students to check their work. Repeat for the other concepts presented in this lesson.

Getting Ready for

Lesson 10-6
Prerequisite Skill Students will learn about secants, tangents, and angle measures in Lesson 10-6. They will apply concepts of solving equations to writing proofs and finding values. Use Exercises 42-45 to determine your students' familiarity with solving equations.

Answers

32. Sample answer: Many of the field events have the athlete moving in a circular motion and releasing an object (discus, hammer, shot). The movement of the athlete models a circle and the path of the released object models a tangent. Answers should include the following.

- The arm of the thrower, the handle, the wire, and hammer form the radius defining the circle when the hammer is spun around. The tangent is the path of the hammer when it is released.
- The distance the hammer was from the athlete was about 70.68 meters.

41. Sample answer:

Given: $A B C D$ is a rectangle. E is the midpoint of $\overline{A B}$.
Prove: $\triangle C E D$ is isosceles.

Answer the question that was posed at the beginning of the lesson. See margin.
How are tangents related to track and field events?
Include the following in your answer:

- how the hammer throw models a tangent, and
- the distance the hammer landed from the athlete if the wire and handle are 1.2 meters long and the athlete's arm is 0.8 meter long.

Standardized
Test Practice (A) (B) C D
33. GRID IN $\overline{A B}, \overline{B C}, \overline{C D}$, and $\overline{A D}$ are tangent to a circle. If $A B=19, B C=6$, and $C D=14$, find $A D .27$
34. ALGEBRA Find the mean of all of the numbers from 1 to 1000 that end in 2. B
(A) 496
(B) 497
(C) 498
(D) 500

Extending the Lesson

A line that is tangent to two circles in the same plane is called a common tangent.

| Common internal tangents intersect
 the segment connecting the centers. | Common external tangents do not intersect
 the segment connecting the centers. |
| :--- | :--- | :--- |
| Lines K and j
 are common
 internal
 tangents. | Lines ℓ and m
 are common
 external
 tangents. |

Refer to the diagram of the eclipse on page 557.
35. Name two common internal tangents. 36. Name two common external tangents. $\overrightarrow{A D}$ and $\overrightarrow{B C}$ $\overparen{A E}$ and $\overrightarrow{B F}$

Maintain Your Skills

Mixed Review 37. LOGOS Circles are often used in logos for commercial products. The logo at the right shows two inscribed angles and two central angles. If $\overparen{A C} \cong \widehat{B D}, m \widehat{A F}=90, m \widehat{F E}=45$, and $m \widehat{E D}=90$, find $m \angle A F C$ and $m \angle B E D$. (Lesson 10-4) 45, 45

Find each measure. (Lesson 10-3)
38. x

$5 \sqrt{3} \approx 8.7$
39. $B C$

40. $A P$

41. PROOF Write a coordinate proof to show that if E is the midpoint of $\overline{A B}$ in rectangle $A B C D$, then $\triangle C E D$ is isosceles. (Lesson 8-7) See margin.

Getting Ready for the Next Lesson

PREREQUISITE SKILL Solve each equation.
(To review solving equations, see pages 737 and 738.)
42. $x+3=\frac{1}{2}[(4 x+6)-10] 5$
43. $2 x-5=\frac{1}{2}[(3 x+16)-20] 6$
44. $2 x+4=\frac{1}{2}[(x+20)-10] \frac{2}{3}$
45. $x+3=\frac{1}{2}[(4 x+10)-45] 20.5$

558 Chapter 10 Circles

Proof: Let the coordinates of E be $(a, 0)$. Since E is the midpoint and is halfway between A and B, the coordinates of B will be $(2 a, 0)$. Let the coordinates of D be $(0, b)$. The coordinates of C will be $(2 a, b)$, because it is on the same horizontal as D and the same vertical as B.

$$
\begin{aligned}
E D & =\sqrt{(a-0)^{2}+(0-b)^{2}} & E C & =\sqrt{(a-2 a)^{2}+(0-b)^{2}} \\
& =\sqrt{a^{2}+b^{2}} & & =\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Since $E D=E C, \overline{E D} \cong \overline{E C} . \triangle D E C$ has two congruent sides, so it is isosceles.

Inscribed and Circumscribed Triangles

In Lesson 5-1, you learned that there are special points of concurrency in a triangle.
Two of these will be used in these activities.

- The incenter is the point at which the angle bisectors meet. It is equidistant from the sides of the triangle.
- The circumcenter is the point at which the perpendicular bisectors of the sides intersect. It is equidistant from the vertices of the triangle.

Activity 1

Construct a circle inscribed in a triangle. The triangle is circumscribed about the circle.
(1) Draw a triangle and label its vertices A, B, and C. Construct two angle bisectors of the triangle to locate the incenter. Label it D.

Construct a segment perpendicular to a side of $\triangle A B C$ through the incenter. Label the intersection E.

3. Use the compass to measure $D E$. Then put the point of the compass on D, and draw a circle with that radius.

Activity 2

Construct a circle through any three noncollinear points.
This construction may be referred to as circumscribing a circle about a triangle.Draw a triangle and label its vertices A, B, and C. Construct perpendicular bisectors of two sides of the triangle to locate the circumcenter. Label it D.
Use the compass to measure the distance from the circumcenter D to any of the three vertices.

Using that setting, place the compass point at D, and draw a circle about the triangle.

(continued on the next page)

Geometry Activity Inscribed and Circumscribed Triangles 55

Resource Manager

Glencoe Mathematics Classroom Manipulative Kit

- compasses
- rulers

A Follow-Up of Lessons 10-4 and 10-5

Geting Started

Explain that students will use the incenter of a triangle to construct a circle so that the triangle is circumscribed about the circle, and they will use the circumcenter of a triangle to construct a circle in which the triangle is inscribed. They will also learn how to construct an equilateral triangle circumscribed about a circle.

Objective To construct inscribed and circumscribed triangles.

Materials

straightedge, compass, pencil, paper

Teach

- For Activity 1, have students draw an acute triangle. Have them use an acute triangle or obtuse triangle for Activity 2.
- In Activity 1, remind students that they only need two angle bisectors to locate the incenter because by definition, students know that the third angle bisector would pass through the same point.
- Explain that students must construct the angle bisectors and perpendicular bisectors for these activities because they need very accurate positions for the incenter and circumcenter in order to complete the activities successfully.
- In Activity 3, tell students that the radius is the setting needed to construct six congruent arcs in a circle.

Geometry Activity

Assess

Exercises 1-3 lead students to repeat the activities for different types of triangles and practice the constructions. Students draw upon their knowledge of circles and use Exercises 4-10 to analyze their constructions and form a conjecture about the terms incenter and circumcenter.

Study Notebook

Ask students to summarize what
they have learned about inscribed and circumscribed triangles and the terms incenter and circumcenter.

Answers

4. The incenter is equidistant from each side. The perpendicular to one side should be the same length as it is to the other two sides.
5. The incenter is equidistant from all the sides. The radius of the circle is perpendicular to the tangent sides and all radii are congruent, matching the distance from the incenter to the sides.
6. The circumcenter is equidistant from all three vertices, so the distance from the circumcenter to one vertex is the same as the distance to each of the others.
7. The circumcenter is equidistant from the vertices and all of the vertices must lie on the circle. So, this distance is the radius of the circle containing the vertices.

For the next activity, refer to the construction of an inscribed regular hexagon on page 542.

Activity 3

Construct an equilateral triangle circumscribed about a circle.
(1) Construct a circle and divide it into six congruent arcs.
Place a point at every other arc. Draw rays from the center through these points.

Construct a line perpendicular to each of the rays through the points.

Model

1. Draw an obtuse triangle and inscribe a circle in it. 1-3. See students' work.
2. Draw a right triangle and circumscribe a circle about it.
3. Draw a circle of any size and circumscribe an equilateral triangle about it.

Analyze

Refer to Activity 1. 4-5. See margin.
4. Why do you only have to construct the perpendicular to one side of the triangle?
5. How can you use the Incenter Theorem to explain why this construction is valid?

Refer to Activity 2. 6-7. See margin.
6. Why do you only have to measure the distance from the circumcenter to any one vertex?
7. How can you use the Circumcenter Theorem to explain why this construction is valid?

Refer to Activity 3.
8. What is the measure of each of the six congruent arcs? 60
9. Write a convincing argument as to why the lines constructed in Step 3 form an equilateral triangle. See margin.
10. Why do you think the terms incenter and circumcenter are good choices for the points they define? See margin.

560 Chapter 10 Circles
9. Suppose all six radii are drawn. Each central angle measures 60°. Thus, six $30^{\circ}-60^{\circ}-90^{\circ}$ triangles are formed. Each triangle has a side which is a radius r units long. Using $30^{\circ}-60^{\circ}-90^{\circ}$ side ratios, the segment tangent to the circle has length $r \sqrt{3}$, making each side of the circumscribed triangle $2 r \sqrt{3}$. If all three sides have the same measure, then the triangle is equilateral.

10. The incenter is the point from which you can construct a circle "in" the triangle. Circum means around. So the circumcenter is the point from which you can construct a circle "around" the triangle.

Secants, Tangents, and Angle Measures

What You'll Learn

- Find measures of angles formed by lines intersecting on or inside a circle.
- Find measures of angles formed by lines intersecting outside the circle.

How is a rainbow formed by segments of a circle?

Droplets of water in the air refract or bend sunlight as it passes through them, creating a rainbow. The various angles of refraction result in an arch of colors. In the figure, the sunlight from point S enters the raindrop at B and is bent. The light proceeds to the back of the raindrop, and is reflected at C to leave the raindrop at point D heading to Earth. Angle F
 represents the measure of how the resulting ray of light deviates from its original path.

INTERSECTIONS ON OR INSIDE A CIRCLE A line that intersects a circle in exactly two points is called a secant. In the figure above, $\overline{S F}$ and $\overline{E F}$ are secants of the circle. When two secants intersect inside a circle, the angles formed are related to the arcs they intercept.

Theorem 10.12

If two secants intersect in the interior of a circle, then the measure of an angle formed is one-half the sum of the measure of the arcs intercepted by the angle and its vertical angle.
Examples: $m \angle 1=\frac{1}{2}(m \widehat{A C}+m \widehat{B D})$
 $m \angle 2=\frac{1}{2}(m \overline{A D}+m \widehat{B C})$

Proof Theorem 10.12

Given: secants $\overleftrightarrow{R T}$ and $\overleftrightarrow{S U}$
Prove: $m \angle 1=\frac{1}{2}(m \widehat{S T}+m \widehat{R U})$
Draw $\overline{R S}$. Label $\angle T R S$ as $\angle 2$ and $\angle U S R$ as $\angle 3$.
Proof:

Statements

Reasons

1. $m \angle 1=m \angle 2+m \angle 3$
2. Exterior Angle Theorem
3. $m \angle 2=\frac{1}{2} m \widehat{S T}, m \angle 3=\frac{1}{2} m \widehat{R U}$
4. $m \angle 1=\frac{1}{2} m \widehat{S T}+\frac{1}{2} m \widehat{R U}$
5. $m \angle 1=\frac{1}{2}(m \widehat{S T}+m \widehat{R U})$
6. The measure of inscribed $\angle=$ half the measure of the intercepted arc.
7. Substitution
8. Distributive Property

1 Focus

5-Minute Check

Transparency 10-6 Use as a quiz or review of Lesson 10-5.

Mathematical Background notes are available for this lesson on p. 520D.

How

 is a rainbow formed by segments of a circle?Ask students:

- If you were to connect B and D in the figure, what would you have? a triangle inscribed in the circle
- Name some situations that allow you to see a rainbow formed by segments of a circle. Sample answers: a rainy, misty day when the sun is low in the sky; a bright sunny day when you are spraying a mist of water from a hose

Resource Manager

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 571-572
- Skills Practice, p. 573
- Practice, p. 574
- Reading to Learn Mathematics, p. 575
- Enrichment, p. 576
- Assessment, p. 604

Prerequisite Skills Workbook, pp. 17-18 Teaching Geometry With Manipulatives Masters, p. 17

Transparencies

5-Minute Check Transparency 10-6
Answer Key Transparencies

2 Teach

INTERSECTIONS ON OR INSIDE A CIRCLE

In-Class Examples

1 Find $m \angle 4$ if $m \widehat{F G}=88$ and $m \widehat{E H}=76.98$

2 Find $m \angle R P S$ if $m \widehat{P T}=114$ and $m \widehat{T S}=136.55$

Some students may ask you what the difference is between chords and secants and why there are two names for something that intersects a circle at two points. You may want to review how segments are parts of lines and explain that chords are segments of secants, which are lines that intersect circles. Tell students that every chord lies on a secant and that every secant contains a chord.

Example 1 Secant-Secant Angle

Find $m \angle 2$ if $m \overparen{B C}=30$ and $m \overparen{A D}=20$.

Method 1

$$
\begin{aligned}
m \angle 1 & =\frac{1}{2}(m \widehat{B C}+m \widehat{A D}) \\
& =\frac{1}{2}(30+20) \text { or } 25 \quad \text { Substitution } \\
m \angle 2 & =180-m \angle 1 \\
& =180-25 \text { or } 155
\end{aligned}
$$

Method 2

$$
m \angle 2=\frac{1}{2}(\overrightarrow{A B}+m \widehat{D E C})
$$

Find $m \widehat{A B}+m \widehat{D E C}$.

$$
\begin{aligned}
m \widehat{A B}+m \widehat{D E C} & =360-(m \widehat{B C}+m \widehat{A D}) \\
& =360-(30+20) \\
& =360-50 \text { or } 310
\end{aligned}
$$

$$
m \angle 2=\frac{1}{2}(m \widehat{A B}+m \widehat{D E C})
$$

$$
=\frac{1}{2}(310) \text { or } 155
$$

A secant can also intersect a tangent at the point of tangency. Angle $A B C$ intercepts $\overparen{B C}$, and $\angle D B C$ intercepts $\widehat{B E C}$. Each angle formed has a measure half that of the arc it intercepts.

$$
m \angle A B C=\frac{1}{2} m \widehat{B C} \quad m \angle D B C=\frac{1}{2} m \widehat{B E C}
$$

This is stated formally in Theorem 10.13.

Theorem 10.13

If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one-half the measure of its intercepted arc.

You will prove this theorem in Exercise 43.

Example 2 Secant-Tangent Angle

Find $m \angle A B C$ if $m \widehat{A B}=102$.

$$
\begin{aligned}
m \widehat{A D B} & =360-m \widehat{A B} \\
& =360-102 \text { or } 258 \\
m \angle A B C & =\frac{1}{2} m \widehat{A D C} \\
& =\frac{1}{2}(258) \text { or } 129
\end{aligned}
$$

each angle formed is one-half the measure of its intercepted arc.

Differentiated Instruction

Naturalist Explain that the relationships presented in this chapter are naturally occurring relationships that have been mathematically defined and explained. Tell students that scientists from all fields can use these relationships to examine everything from raindrops and soap bubbles to cells and microorganisms.

Study Tip

Absolute Value The measure of each $\angle A$ can also be expressed as one-half the absolute value of the difference of the arc measures. In this way,
the order of the arc measures does not affect the outcome of the calculation.

INTERSECTIONS OUTSIDE A CIRCLE Secants and tangents can also meet outside a circle. The measure of the angle formed also involves half of the measures of the arcs they intercept.

Theorem 10.14

If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

You will prove this theorem in Exercise 40.

Example 3 Secant-Secant Angle

Find x.

$$
\begin{array}{rlrl}
m \angle C & =\frac{1}{2}(m \widehat{E A}-m \widehat{D B}) & \\
x & =\frac{1}{2}(120-50) & & \text { Substitution } \\
x & =\frac{1}{2}(70) \text { or } 35 & & \text { Simplify. }
\end{array}
$$

Example 4 Tangent-Tangent Angle

SATELLITES Suppose a geostationary satellite S orbits about 35,000 kilometers above Earth rotating so that it appears to hover directly over the equator. Use the figure to determine the arc measure on the equator visible to this geostationary satellite.

$\overparen{P R}$ represents the arc along the equator visible to the satellite S. If $x=m \overparen{P R}$, then $m \widehat{P Q R}=360-x$. Use the measure of the given angle to find $m \widehat{P R}$.

$$
\begin{aligned}
m \angle S & =\frac{1}{2}(m \widehat{P Q R}-m \widehat{P R}) & & \\
11 & =\frac{1}{2}[(360-x)-x] & & \text { Substitution } \\
22 & =360-2 x & & \text { Multiply each side by } 2 \text { and simplify. } \\
-338 & =-2 x & & \text { Subtract } 360 \text { from each side. } \\
169 & =x & & \text { Divide each side by }-2 .
\end{aligned}
$$

The measure of the arc on Earth visible to the satellite is 169 .

INTERSECTIONS OUTSIDE A CIRCLE

In-Class Examples

Power

Point ${ }^{\circledR}$
3 Find x. 17

Teaching Tip Remind students that a semicircle is formed when a chord passes through the center of the circle to make a diameter. Explain that students should always examine a figure for known information that might not be labeled.

4 JEWELRY A jeweler wants to craft a pendant with the shape shown. Use the figure to determine the
 measure of the arc at the bottom of the pendant. 220
www.geometryonline.com/extra_examples

Find $x .25$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 10.
- include examples to demonstrate the relationships described in the theorems introduced in this lesson. - include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..

Organization by Objective

- Intersections on or Inside a Circle: 12-19
- Intersections Outside a Circle: 21-32

Odd/Even Assignments

Exercises 12-32 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13, 17-29 odd, 33-45
odd, 46-59
Average: 13-45 odd, 46-59
Advanced: 12-40 even, 41, 42, 44, 45-56 (optional: 57-59)
All: Quiz 2 (1-5)

Example 5 Secant-Tangent Angle

Find x.
$\overline{W R V}$ is a semicircle because $\overline{W V}$ is a diameter.
So, $m \widehat{W R V}=180$.

$$
\begin{aligned}
m \angle Y & =\frac{1}{2}(m \widehat{W V}-m \widehat{Z V}) & & \\
45 & =\frac{1}{2}(180-10 x) & & \text { Substitution } \\
90 & =180-10 x & & \text { Multiply each side by } 2 . \\
-90 & =-10 x & & \text { Subtract } 180 \text { from each side. } \\
9 & =x & & \text { Divide each side by }-10 .
\end{aligned}
$$

Check for Understanding

Concept Check 1. Describe the difference between a secant and a tangent. 1-2. See margin.
2. OPEN ENDED Draw a circle and one of its diameters. Call the diameter $\overline{A C}$. Draw a line tangent to the circle at A. What type of angle is formed by the tangent and the diameter? Explain.

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
3	1
4,8	2
5	3
6	4
7	5

3. $m \angle 1138$

4. $m \angle 2130$

Find x.
5.

6.

227.

Application CIRCUS For Exercises 8-11, refer to the figure and the information below.
One of the acrobatic acts in the circus requires the artist to balance on a board that is placed on a round drum as shown at the right. Find each measure if $\overline{S A} \| \overline{L K}$, $m \angle S L K=78$, and $m \widehat{S A}=46$.
8. $m \angle C A S 23$
9. $m \angle Q A K 55$
10. $m \widehat{K L} 94$
11. $m \overparen{S L} 110$

* indicates increased difficulty

Practice and Apply

Find each measure.
12. $m \angle 3110$

13. $m \angle 460$

14. $m \angle 550$

Answers

1. Sample answer: A tangent intersects the circle in only one point and no part of the tangent is in the interior of the circle. A secant intersects the circle in two points and some of its points do lie in the interior of the circle.
2. Sample answer: $\angle T A C$ is a right angle; There are two reasons: (1) If the point of tangency is the endpoint of a diameter, then the tangent is perpendicular to the
 diameter at that point. (2) The arc intercepted by the secant (diameter) and the tangent is a semicircle. Thus the measure of the angle is half of 180 or 90.

* 15. $m \angle 6110$

18. $m \angle 9120$

19. $m \angle 798$

20. $m \angle 1050$

21. $m \angle 890$

22. $m \widehat{A C} 58$

Find x. Assume that any segment that appears to be tangent is tangent.
21.

22.

23.

24.

25.

26.

27.

29.
31. $(4 x+50)^{\circ} \quad 10$
33. WEAVING Once yarn is woven from wool fibers, it is often dyed and then threaded along a path of pulleys to dry. One set of pulleys is shown below. Note that the yarn appears to intersect itself at C, but in reality it does not. Use the information from the diagram to find $m \widehat{B H} .141$

Lesson 10-6 Secants, Tangents, and Angle Measures 565
Study Guide and Intervention, p. 571 (shown) and p. 572

Intersections On or Inside a Circle A line that intersects a circle in exactly tw
points is called a secant. The measures of angles formed by secants and tangents are points is called a secant. Th
related to intercepted arcs.

Skills Practice, p. 573 and Practice, p. 574 (shown) Find each measure.

113

* 28.

30.

* 32.

565

Answers

40a. Given: $\overleftrightarrow{A C}$ and $\overleftrightarrow{A T}$ are secants to the circle.
Prove: $m \angle C A T=\frac{1}{2}(m \overparen{C T}-m \overparen{B R})$

Statements (Reasons)

1. $\overleftrightarrow{A C}$ and $\overleftrightarrow{A T}$ are secants to the circle. (Given)
2. $m \angle C R T=\frac{1}{2} m \overparen{C T}, m \angle A C R=\frac{1}{2} m \widehat{B R}$ (The meas. of an inscribed $\angle=\frac{1}{2}$ the meas. of its intercepted arc.)
3. $m \angle C R T=m \angle A C R+m \angle C A T$ (Exterior 노 Theorem)
4. $\frac{1}{2} m \overparen{C T}=\frac{1}{2} m \widehat{B R}+m \angle C A T$ (Substitution)
5. $\frac{1}{2} m \overparen{C T}-\frac{1}{2} m \widehat{B R}=m \angle C A T$ (Subtraction Prop.)
6. $\frac{1}{2}(m \overparen{C T}-m \overparen{B R})=m \angle C A T$ (Distributive Prop.)
40b. Given: $\overleftrightarrow{D G}$ is a tangent to the circle. $\overleftrightarrow{D F}$ is a secant to the circle.
Prove: $m \angle F D G=\frac{1}{2}(m \widehat{F G}-m \widehat{G E})$

Statements (Reasons)

1. $\overleftrightarrow{D G}$ is a tangent to the circle. $\overleftrightarrow{D F}$ is a secant to the circle. (Given)
2. $m \angle D F G=\frac{1}{2} m \widehat{G E}, m \angle F G H=\frac{1}{2} m \widetilde{F G}$ (The meas. of an inscribed $\angle=\frac{1}{2}$ the meas. of its intercepted arc.)
3. $m \angle F G H=m \angle D F G+m \angle F D G$
(Exterior \angle S Theorem)
4. $\frac{1}{2} m \overparen{F G}=\frac{1}{2} m \widehat{G E}+m \angle F D G$ (Substitution)
5. $\frac{1}{2} m \overparen{F G}-\frac{1}{2} m \widehat{G E}=m \angle F D G$ (Subtraction Prop.)
6. $\frac{1}{2}(m \widehat{F G}-m \widehat{G E})=m \angle F D G$ (Distributive Prop.)
40c. Given: $\overleftrightarrow{H I}$ and $\overleftrightarrow{H J}$ are tangents to the circle.
Prove: $m \angle I H J=\frac{1}{2}(m \overparen{I X J}-m \overparen{m I J})$

More About.

Landmarks •..............
Stonehenge is located in southern England near Salisbury. In its final form, Stonehenge included 30 upright stones about 18 feet tall by 7 feet thick. Source: World Book Encyclopedia

Find each measure if $m \overparen{F E}=118, m \overparen{A B}=108$ $m \angle E G B=52$, and $m \angle E F B=30$.
34. $m \widehat{A C} 30$
35. $m \overparen{C F} 44$

36. $m \angle E D B 15$

- LANDMARKS For Exercises 37-39, use the following information.

Stonehenge is a British landmark made of huge stones arranged in a circular pattern that reflects the movements of Earth and the moon. The diagram shows that the angle formed by the north/south axis and the line aligned from the station stone to the northmost moonrise position measures 23.5°.

37. Find $m \overparen{B C} .118$
38. Is $\widehat{A B C}$ a semicircle? Explain. No, its measure is 189.
39. If the circle measures about 100 feet across, approximately how far would you walk around the circle from point B to point C ? about 103 ft
40. PROOF Write a two-column proof of Theorem 10.14. Consider each case.
a. Case 1: Two Secants See margin.

Given: $\overleftrightarrow{A C}$ and $\overleftrightarrow{A T}$ are secants to the circle.
Prove: $m \angle C A T=\frac{1}{2}(m \widehat{C T}-m \widehat{B R})$

b. Case 2: Secant and a Tangent See margin.

Given: $\overleftrightarrow{D G}$ is a tangent to the circle.
$\overleftrightarrow{D F}$ is a secant to the circle.
Prove: $m \angle F D G=\frac{1}{2}(m \widehat{F G}-m \widehat{G E})$

c. Case 3: Two Tangents See margin.

Given: $\overleftrightarrow{H I}$ and $\overleftrightarrow{H J}$ are tangents to the circle.
Prove: $m \angle I H J=\frac{1}{2}(m \widehat{I X I}-m \overparen{I I J})$

41. CRITICAL THINKING Circle E is inscribed in rhombus $A B C D$. The diagonals of the rhombus are 10 centimeters and 24 centimeters long. To the nearest tenth centimeter, how long is the radius of circle E ? (Hint: Draw an altitude from E.) 4.6 cm

Statements (Reasons)

1. $\overleftrightarrow{H I}$ and $\overleftrightarrow{H J}$ are tangents to the circle. (Given)
2. $\frac{1}{2} m \overparen{I X J}=\frac{1}{2} m \overparen{I J}+m \angle I H J$ (Substitution)
3. $m \angle I J K=\frac{1}{2} m \overparen{I X J}, m \angle H I J=\frac{1}{2} m \overparen{I J}$ (The measure of a secant-tangent $\angle=\frac{1}{2}$ the measure of its intercepted arc.)
4. $m \angle I J K=m \angle H I J+m \angle I H J(E x t . \angle s$ Th. $)$
5. $\frac{1}{2} m \overparen{I X J}-\frac{1}{2} m \overparen{I J}=m \angle I H J$ (Subtr. Prop.)
6. $\frac{1}{2}(m \overparen{I X J}-m \overparen{m J})=m \angle I H J$ (Distrib. Prop. $)$
7. $\angle 3, \angle 1, \angle 2$;
$m \angle 3=m \widehat{R Q}$,
$m \angle 1=\frac{1}{2} m \widehat{R Q}$ so
$m \angle 3>m \angle 1$,
$m \angle 2=\frac{1}{2}(m \overparen{R Q}-$
$m \widehat{T P})=\frac{1}{2} m \widehat{R Q}-$ $\frac{1}{2} m \overparen{T P}$, which is less
than $\frac{1}{2} m \widehat{R Q}$, so
$m \angle 2<m \angle 1$.
8. TELECOMMUNICATION The signal from a telecommunication tower follows a ray that has its endpoint on the tower and is tangent to Earth. Suppose a tower is located at sea level as shown in the figure. Determine the measure of the arc intercepted by the two tangents. 93.5
9. PROOF Write a paragraph proof of Theorem 10.13
a. Given: $\overleftrightarrow{A B}$ is a tangent of $\odot O$.
$\overrightarrow{A C}$ is a secant of $\odot O$.
$\angle C A B$ is acute.

Note: Art not drawn to scale

Prove: $m \angle C A B=\frac{1}{2} m \overline{C A}$
b. Prove Theorem 10.13 if the angle in part a is obtuse. See margin.
44. SATELLITES A satellite is orbiting so that it maintains a constant altitude above the equator. The camera on the satellite can detect an arc of 6000 kilometers on Earth's surface. This arc measures 54°. What is the measure of the angle of view of the camera located on the satellite? 126
45. CRITICAL THINKING In the figure, $\angle 3$ is a central angle. List the numbered angles in order from greatest measure to least measure. Explain your reasoning.
46.

Answer the question that was posed at the beginning of the lesson. See margin.
How is a rainbow formed by segments of a circle?
Include the following in your answer:

- the types of segments represented in the figure on page 561, and
- how you would calculate the angle representing how the light deviates from its original path.

Standardized
Test Practice
(A) (B) CD
47. What is the measure of $\angle B$ if $m \angle A=10$? A
(A) 30
(B) 35
(C) 47.5
(D) 90

48. ALGEBRA Which of the following sets of data can be represented by a linear equation? C
(A)

x	y
1	2
2	4
3	8
4	16

(B)

(C)

x	y
2	2
4	3
6	4
8	5

(D)

x	y
1	1
3	9
5	25
7	49

46. Sample answer: Each raindrop refracts light from the sun and sends the beam to Earth. The raindrop is actually spherical, but the angle of the light is an inscribed angle from the bent rays. Answers should include the following.

- $\angle C$ is an inscribed angle and $\angle F$ is a secant-secant angle.
- The measure of $\angle F$ can be calculated by finding the positive difference between $m \widehat{B D}$ and the measure of the small intercepted arc containing point C.

Answers

43a. Given: $\overleftrightarrow{A B}$ is a tangent to $\odot 0$. $\overrightarrow{A C}$ is a secant to $\odot O . \angle C A B$ is acute.
Prove: $m \angle C A B=\frac{1}{2} m \widetilde{C A}$

Proof: $\angle D A B$ is a right \angle with measure 90, and $\widehat{D C A}$ is a semicircle with measure 180, since if a line is tangent to a \odot, it is \perp to the radius at the point of tangency. Since $\angle C A B$ is acute, C is in the interior of $\angle D A B$, so by the Angle and Arc Addition Postulates, $m \angle D A B=m \angle D A C+$ $m \angle C A B$ and $m \widehat{D C A}=m \widehat{D C}+$ $m \widehat{C A}$. By substitution, $90=$ $m \angle D A C+m \angle C A B$ and $180=$ $m \overrightarrow{D C}+m \widehat{C A}$. So, $90=\frac{1}{2} m \widehat{D C}+$ $\frac{1}{2} m \widehat{C A}$ by Division Prop., and $m \angle D A C+m \angle C A B=\frac{1}{2} m \widehat{D C}+$ $\frac{1}{2} m \widehat{C A}$ by substitution. $m \angle D A C=$ $\frac{1}{2} m \overparen{D C}$ since $\angle D A C$ is inscribed, so substitution yields $\frac{1}{2} m \widetilde{D C}+$ $m \angle C A B=\frac{1}{2} m \overparen{D C}+\frac{1}{2} m \widehat{C A} . B y$ Subtraction Prop., $m \angle C A B=$ $\frac{1}{2} m C A$.
43b. Given: $\overleftrightarrow{A B}$ is a tangent to $\odot 0$. $\overrightarrow{A C}$ is a secant to $\odot 0$. $\angle C A B$ is obtuse.
Prove: $m \angle C A B=\frac{1}{2} m \widehat{C D A}$

Proof: $\angle C A B$ and $\angle C A E$ form a linear pair, so $m \angle C A B+$ $m \angle C A E=180$. Since $\angle C A B$ is obtuse, $\angle C A E$ is acute and Case 1 applies, so $m \angle C A E=\frac{1}{2} m \widehat{C A}$. $m \widehat{C A}+m \overline{C D A}=360$, so $\frac{1}{2} m \widehat{C A}+\frac{1}{2} m \widehat{C D A}=180$ by Division Prop., and $m \angle C A E+$ $\frac{1}{2} m \overline{C D A}=180$ by substitution. By the Transitive Prop., $m \angle C A B+$ $m \angle C A E=m \angle C A E+\frac{1}{2} m \overline{C D A}$, so by Subtraction Prop., $m \angle C A B=$ $\frac{1}{2} m \overline{C D A}$.

Lesson 10-6 Secants, Tangents, and Angle Measures

4 Assess

Open-Ended Assessment

Speaking Select examples and ask students to call out the names of the segments in the figure.
Then call on volunteers to explain how they would find missing angle measures or arc lengths.

Getting Ready for
 Lesson 10-7

Prerequisite Skill Students will learn about special segments in a circle in Lesson 10-7. They will apply solving quadratic equations to find values for segments that intersect in the interior and exterior of a circle. Use Exercises 57-59 to determine your students' familiarity with solving quadratic equations by factoring.

Assessment Options

Practice Quiz 2 The quiz provides students with a brief review of the concepts and skills in Lessons 10-4 through 10-6. Lesson numbers are given to the right of the exercises or instruction lines so students can review concepts not yet mastered.
Quiz (Lessons 10-5 and 10-6)
is available on p. 604 of the Chapter 10 Resource Masters.

Answer

56. Given: $\overline{A C} \cong \overline{B F}$

Prove: $A B=C F$

Proof: By definition of congruent segments, $A C=B F$. Using the Segment Addition Postulate, we know that $A C=A B+B C$ and $B F=B C+C F$. Since $A C=B F$, this means that $A B+B C=$ $B C+C F$. If $B C$ is subtracted from each side of this equation, the result is $A B=C F$.

Maintain Your Skills

Mixed Review
Find x. Assume that segments that appear to be tangent are tangent. (Lesson 10-5)
49.

In $\odot P, m \overparen{E N}=66$ and $m \angle G P M=89$.
Find each measure. (Lesson 10-4)
51. $m \angle E G N 33$
52. $m \angle G M E 57$
53. $m \angle G N M 44.5$
50. 4

RAMPS Use the following information for Exercises 54 and 55.
The Americans with Disabilities Act (ADA), which went into effect in 1990, requires that wheelchair ramps have at least a 12 -inch run for each rise of 1 inch. (Lesson 3-3)
54. Determine the slope represented by this requirement. $\frac{1}{12}$
55. The maximum length the law allows for a ramp is 30 feet. How many inches tall is the highest point of this ramp? 30 in .
56. PROOF Write a paragraph proof to show that $A B=C F$ if $\overline{A C} \cong \overline{B F}$. (Lesson 2-5) See margin.

Getting Ready for the Next Lesson

PREREQUISITE SKILL Solve each equation by factoring.
(To review solving equations by factoring, see pages 750 and 751 .)
57. $x^{2}+6 x-40=0$
4, -10
58. $2 x^{2}+7 x-30=0$
59. $3 x^{2}-24 x+45=03,5$
$-6,2 \frac{1}{2}$

Practice Quiz 2
Lessons 10-4 through 10-6

1. AMUSEMENT RIDES A Ferris wheel is shown at the right. If the distances between the seat axles are the same, what is the measure of an angle formed by the braces attaching consecutive seats? (Lesson 10-4) 67.5
2. Find the measure of each numbered angle (Lesson 10-4) $m \angle 1=m \angle 2=34$

Find x. Assume that any segment that appears to be tangent is tangent. (Lessons 10-5 and 10-6)

4.

115.5

What You'll Learn

- Find measures of segments that intersect in the interior of a circle.
- Find measures of segments that intersect in the exterior of a circle

How are lengths of intersecting chords related?
The star is inscribed in a circle. It was formed by intersecting chords. Segments $A D$ and $E B$ are two of those chords. When two chords intersect, four smaller segments are defined.

SEGMENTS INTERSECTING INSIDE A CIRCLE In Lesson 10-2, you learned how to find lengths of parts of a chord that is intersected by the perpendicular diameter. But how do you find lengths for other intersecting chords?

1. $\angle P T S \cong \angle R T Q$ (Vertical is are \cong.); $\angle P \cong \angle R$ (B intercepting same arc are \cong.); $\angle S \cong \angle Q$ (s intercepting same arc are \cong.)
2. $\frac{P T}{R T}=\frac{S T}{T Q}$ or
$P T \cdot T Q=R T \cdot S T$

Geometry Activity

Intersecting Chords

- Make A Model

- Draw a circle and two intersecting chords.
- Name the chords $\overline{P Q}$ and $\overline{R S}$ intersecting at T.
- Draw $\overline{P S}$ and $\overline{R Q}$.

Analyze

1. Name pairs of congruent angles. Explain your reasoning.
2. How are $\triangle P T S$ and $\triangle R T Q$ related? Why? similar by AA Similarity
3. Make a conjecture about the relationship of $\overline{P T}, \overline{T Q}, \overline{R T}$, and $\overline{S T}$.

The results of the activity suggest a proof for Theorem 10.15

Theorem 10.15

If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal.

Example: $A E \cdot E C=B E \cdot E D$

You will prove Theorem 10.15 in Exercise 21

Example 1 Intersection of Two Chords

Find x.
$A E \cdot E B=C E \cdot E D$

$x \cdot 6$	$=3 \cdot 4$		Substitution
$6 x$	$=12$		Multiply.
x	$=2$		Divide each side by 6.

Workbook and Reproducible Masters

Chapter 10 Resource Masters

- Study Guide and Intervention, pp. 577-578
- Skills Practice, p. 579
- Practice, p. 580
- Reading to Learn Mathematics, p. 581
- Enrichment, p. 582

Prerequisite Skills Workbook, pp. 35-36, 51-52
Teaching Geometry With Manipulatives Masters, p. 17

Resource Manager

Transparencies

5-Minute Check Transparency 10-7
Answer Key Transparencies

- Technology

Interactive Chalkboard
Multimedia Applications: Virtual Activities

SEGMENTS INTERSECTING INSIDE A CIRCLE

In-Class Examples
1 Find $x .13 .5$

Teaching Tip Remind students that a diameter can be drawn to bisect any chord of a circle.

2 BIOLOGY Biologists often examine organisms under microscopes. The circle represents the field of view under the microscope with a diameter of 2 mm . Determine the length of the organism if it is located 0.25 mm from the bottom of the field of view. Round to the nearest hundredth. 0.66 mm

SEGMENTS INTERSECTING OUTSIDE A CIRCLE

In-Class Example

Power Point ${ }^{\circledR}$

3 Find x if $E F=10, E H=8$, and $F G=24.34 .5$

Example 2 Solve Problems

TUNNELS Tunnels are constructed to allow roadways to pass through mountains. What is the radius of the circle containing the arc if the opening is not a semicircle?
Draw a model using a circle. Let x represent the
 unknown measure of the segment of diameter $\overline{A B}$. Use the products of the lengths of the intersecting chords to find the length of the diameter.
$A E \cdot E B=D E \cdot E C \quad$ Segment products
$12 x=24 \cdot 24$
Substitution
$x=48 \quad$ Divide each side by 12.
$A B=A E+E B \quad$ Segment Addition Postulate
$A B=12+48$ or $60 \quad$ Substitution and addition

Since the diameter is $60, r=30$.

SEGMENTS INTERSECTING OUTSIDE A CIRCLE Nonparallel chords of a circle can be extended to form secants that intersect in the exterior of a circle. The special relationship among secant segments excludes the chord.

Study Tip

Helping You
Remember
To remember this concept, the wording of Theorem 10.16 can be simplified by saying that each side of the equation is the product of the exterior part and the whole segment.

Theorem 10.16

If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment
 and its external secant segment.

Example: $A B \cdot A C=A E \cdot A D$

You will prove this theorem in Exercise 30.

Example 3 Intersection of Two Secants

Find $R S$ if $P Q=12, Q R=2$, and $T S=3$.
Let $R S=x$.

$$
\begin{array}{rlrlrl}
Q R \cdot P R & =R S \cdot R T & & \text { Secant Segment Products } \\
2 \cdot(12+2) & =x \cdot(x+3) & & \text { Substitution } \\
28 & =x^{2}+3 x & & \text { Distributive Property } \\
0 & =x^{2}+3 x-28 & & \text { Subtract } 28 \text { from each side. } \\
0 & =(x+7)(x-4) & & \text { Factor. } \\
x+7=0 & x-4=0 & & \\
x=-7 & x=4 & & \text { Disregard negative value. }
\end{array}
$$

Geometry Activity

Materials: compass, straightedge

- Tell students to draw chords that are not congruent and that do not intersect at the center of the circle.
- Students can use a protractor to verify that the triangles are similar, and they can determine the scale factor by which the triangles are related.

The same secant segment product can be used with a secant segment and a tangent. In this case, the tangent is both the exterior part and the whole segment. This is stated in Theorem 10.17.

Theorem 10.17

If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment.

Example: $W X \cdot W X=W Z \cdot W Y$

You will prove this theorem in Exercise 31.

Example 4 Intersection of a Secant and a Tangent.

Find x. Assume that segments that appear to be tangent are tangent.
$(A B)^{2}=B C \cdot B D$

$$
\begin{aligned}
4^{2} & =x(x+x+2) \\
16 & =x(2 x+2) \\
16 & =2 x^{2}+2 x \\
0 & =2 x^{2}+2 x-16 \\
0 & =x^{2}+x-8
\end{aligned}
$$

This expression is not factorable. Use the Quadratic Formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Quadratic Formula } \\
& =\frac{-1 \pm \sqrt{1^{2}-4(1)(-8)}}{2(1)} & & a=1, b=1, c=-8 \\
& =\frac{-1+\sqrt{33}}{2} \text { or } x=\frac{-1-\sqrt{33}}{2} & & \text { Disregard the negative solution. } \\
& \approx 2.37 & & \text { Use a calculator. }
\end{aligned}
$$

Check for Understanding

Concept Check 1. Show how the products for secant segments are similar to the products for a tangent and a secant segment. See margin.
2. Latisha; the length of the tangent segment squared equals the product of the exterior secant segment and the entire secant, not the interior secant segment.
2. FIND THE ERROR Becky and Latisha are writing products to find x. Who is correct? Explain your reasoning.

4 Find x. Assume that segments that appear to be tangent are tangent. 8

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their
Vocabulary Builder worksheets for Chapter 10.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION
 FIND THE ERROR

Point out to students that in this lesson they do not use the entire length of the interior secant segment in any of the relationships. Explain that in each case with exterior secant segments, they do use the entire length of the exterior secant segment.

Answer

1. Sample answer: The product equation for secant segments equates the product of exterior segment measure and the whole segment measure for each secant. In the case of secant-tangent, the product involving the tangent segment becomes (measure of tangent segment) ${ }^{2}$ because the exterior segment and the whole segment are the same segment. that would be made by the chords, secants, and/or tangents in the figures to help them determine how to set up their products.

Visual/Spatial Students can use their spatial skills to remember the concepts of this lesson. Tell students to visualize the similar triangles
D A I L Y INIIERVENIION

Differentiated Instruction

Lesson 10-7 Special Segments in a Circle 571

About the Exercises...

 Organization by Objective- Segments Intersecting Inside a Circle: 8-11, 20, 27
- Segments Intersecting Outside a Circle: 12-19
Odd/Even Assignments Exercises 8-19, 22-28 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 9, 13-31 odd, 32-48
Average: 9-31 odd, 32-48
Advanced: 8-30 even, 32-45 (optional: 46-48)

Concept Check

Have students create and label a three-column chart with an example of each segment relationship described in this lesson, color code the parts that are equal, and write each relationship in algebraic form.

Answer

3. Sample answer:

4. OPEN ENDED Draw a circle with two secant segments and one tangent segment that intersect at the same point. See margin.

Guided Practice
Find x. Round to the nearest tenth if necessary. Assume that segments that appear to be tangent are tangent.

GUIDED PRACTICE KEY	
Exercises	Examples
4	1
5	4
6	3
7	2

5.

28.1

Application
7. HISTORY The Roman Coliseum has many "entrances" in the shape of a door with an arched top. The ratio of the arch width to the arch height is 7:3. Find the ratio of the arch width to the radius of the circle that contains
 the arch. $\approx 7: 3.54$

夫 indicates increased difficulty

Practice and Apply

 to be tangent are tangent.| Homework Help | |
| :---: | :---: |
| For | See |
| Exercises | Examples |
| $8-11$ | 1 |
| $12-15$ | 4 |
| $16-19$ | 3 |
| 20,27 | 2 |
| Extra Practice | |
| See page 775. | |

11.

12.

13. 13.

14.

15.
16.

20. KNOBS If you remove a knob from a kitchen appliance, you may notice that the hole is not completely round. Suppose the flat edge is 4 millimeters long and the distance from the curved edge to the flat edge is about 4.25 millimeters. Find the radius of the circle containing the hole. about 2.6 mm
10.

8.

9.

17.

18.

21. PROOF Copy and complete the proof of Theorem 10.15 .

Given: $\overline{W Y}$ and $\overline{Z X}$ intersect at T.
Prove: $W T \cdot T Y=Z T \cdot T X$

Statements
a. $\angle W \cong \angle Z, \angle X \cong \angle Y$
b. ? $\triangle W X T \sim \triangle Z Y T$
c. $\frac{W T}{Z T}=\frac{T X}{T Y}$
d. ? $W T \cdot T Y=Z T \cdot T X$

ReasonsInscribed angles that intercept
a. ? the same arc are congruent.
b. AA Similarity
c. ? Definition of similar triangles
d. Cross products

Find each variable. Round to the nearest tenth, if necessary.
22.

25.

27.

$5.3 \quad 23$.

24.

26.

28.

-29. CONSTRUCTION An arch over a courtroom door is 60 centimeters high and 200 centimeters wide. Find the radius of the circle containing the arc of the arch. 113.3 cm

30-31. See p. 589B.
30. PROOF Write a two-column proof of Theorem 10.16.
Given: secants $\overline{E C}$ and $\overline{E B}$
Prove: $E A \cdot E C=E D \cdot E B$

32. CRITICAL THINKING In the figure, Y is the midpoint of $\overline{X Z}$. Find $W X$ in terms of $X Y$. Explain your reasoning.
31. PROOF Write a two-column proof of Theorem 10.17.
Given: tangent $\overline{R S}$, secant $\overline{S U}$
Prove: $(R S)^{2}=S T \cdot S U$

$W X=\sqrt{2} \cdot X Y ;$ see margin for explanation.

Answer

32. $Z Y=X Y$

$$
(W X)^{2}=X Y \cdot X Z
$$

$$
(W X)^{2}=X Y(X Y+Z Y)
$$

$$
(W X)^{2}=X Y(2 X Y)
$$

$$
(W X)^{2}=2(X Y)^{2}
$$

$$
W X=\sqrt{2(X Y)^{2}}
$$

$$
W X=\sqrt{2} \cdot X Y
$$

Enrichment, p. 582

The Nine-Point Circle
The figure below illustrates a surprising fact about triangles and circles.
Given any $\triangle A B C$, there is a circle that contains all of the following nine Given an
points:
(1) the midpoints K, L, and M of the sides of $\triangle A B C$
(2) the points X, Y, and Z, where $\overline{A X}, \overline{B Y}$, and $\overline{C Z}$ are the altitudes of $\triangle A B C$
(3) the points R, S, and T which are the midpoints of the segments $\overline{A H}, \overline{B H}$,
and $C H$ that join the vertices of $\triangle A B C$ to the point H where the lines and $C H$ that join the vertices of $\triangle A B C$ to the point H where the lines
containing the altitudes intersect. containing the altitudes intersect.

Study Guide and Intervention, p. 577 (shown) and p. 578

10. CONSTRUCTION An arch over an apartment entrance is

3 feet high and 9 feet wide Find the radius of the circle
Reading to Learn

Mathematics, p. 581

ELL

Pre-Activity How are lengths of intersecting chords related?
What kinds of angles
inscribed angles

- What is the sum of the measures of the five angles of the star? 180

Reading the Lesson

1. Refer to $\odot O$. Name each of the following.
a. a diameter $\overline{A D}$
b. a chord that is not a diameter $\overline{A B}, \overline{B F}$, or $\overline{A G}$
c. two chords that intersect in the interior of the circle $\overline{A D}$ and $\overline{B F}$
d. an exterior point E
e. two secant segments that intersect in the exterior of the circle $\overline{E A}$ and $\overline{E B}$
f. a tangent segment $\overline{E D}$
g. a right angle $\angle A D E$
h. an external secant segment $\overline{E F}$ or $\overline{E G}$
i. a secant tangent angle with vertex on the circle $\angle A D E$
j. an inscribed angle $\angle B A D, \angle D A G, \angle B A G$, or $\angle A B F$
2. Supply the missing length to complete each equation.
a. $B H \cdot H D=F H \cdot \quad H C \quad$ b. $A C \cdot A F=A D . \quad A E$
c. $A D \cdot A E=A B . \quad A B \quad$ d. $A B=\underline{A l}$
e. $A F \cdot A C=(\underline{(A / \text { or } A B})^{2} \quad$ f. $E G \cdot \underline{G B}=F G \cdot G C$

Helping You Remember
3. Some students find it easier to remember geometric theorems if they restate them in
their own words. Restate Theorem 10.16 in a way that you find easier to remember. Sample answer: Suppose you draw a secant to a circle through a point A
outside the circle. Multiply the distances from point A to the points where the secant intersects the circle. The corresponding product will be

4 Assess

Open-Ended Assessment

Modeling Provide students with three or four cutout circles, thin masking tape, and two or three sheets of construction paper. Have students arbitrarily model segments intersecting inside and outside a circle with the tape and the cutouts. Use the sheets of construction paper for points outside the circle. Students can then use a metric ruler to measure segments and test the theorems in this lesson.

Getting Ready for
 Lesson 10-8

Prerequisite Skill Students will learn about equations of circles in Lesson 10-8. They will apply the Distance Formula to write equations for circles and graph circles. Use Exercises 46-48 to determine your students' familiarity with the Distance Formula.

Answer

33. Sample answer: The product of the parts of one intersecting chord equals the product of the parts of the other chord. Answers should include the following.

- $\overline{A F}, \overline{F D}, \overline{E F}, \overline{F B}$
- $A F \cdot F D=E F \cdot F B$

33. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How are the lengths of intersecting chords related?
Include the following in your answer:

- the segments formed by intersecting segments, $\overline{A D}$ and $\overline{E B}$, and
- the relationship among these segments.

Standardized
Test Practice
(A) (B) C
34. Find two possible values for x from the information in the figure. D
(A) $-4,-5$
(B) $-4,5$
(C) 4,5
(D) $4,-5$

35. ALGEBRA Mr. Rodriguez can wash his car in 15 minutes, while his son Marcus takes twice as long to do the same job. If they work together, how long will it take them to wash the car? C
(A) 5 min
(B) 7.5 min
(C) 10 min
(D) 22.5 min

Maintain Your Skills

Mixed Review
Find the measure of each numbered angle. Assume that segments that appear tangent are tangent. (Lesson 10-6)
36.

12937

157.538

Find x. Assume that segments that appear to be tangent are tangent. (Lesson 10-5)
39.

40.

841.

42. INDIRECT MEASUREMENT Joseph Blackarrow is measuring the width of a stream on his land to build a bridge over it. He picks out a rock across the stream as landmark A and places a stone on his side as point B. Then he measures 5 feet at a right angle from $\overline{A B}$ and marks this C. From C, he sights a line to point A on the other side of the stream and measures the angle to be about 67°. How far is it across the stream rounded to the nearest whole foot? (Lesson 7-5) 12 ft

Classify each triangle by its sides and by its angles. (Lesson 4-1)
43.

scalene, obtuse
44.

45.
 equilateral, acute, or equiangular
isosceles, right

PREREQUISITE SKILL Find the distance between each pair of points.
(To review the Distance Formula, see Lesson 1-3.)
46. $C(-2,7), D(10,12) 13$
47. $E(1,7), F(3,4) \sqrt{13}$
48. $G(9,-4), H(15,-2) \sqrt{40}$

Getting Ready for the Next Lesson

What You'll Learn

- Write the equation of a circle.
- Graph a circle on the coordinate plane.

What

kind of equations describes the ripples of a splash?

When a rock enters the water, ripples move out from the center forming concentric circles. If the rock is assigned coordinates, each ripple can be modeled by an equation of a circle.

EQUATION OF A CIRCLE The fact that a circle is the locus of points in a plane equidistant from a given point creates an equation for any circle.
Suppose the center is at $(3,2)$ and the radius is 4 .
The radius is the distance from the center. Let $P(x, y)$ be the endpoint of any radius.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
4 & =\sqrt{(x-3)^{2}+(y-2)^{2}} & & d=4,\left(x_{1}, y_{1}\right)=(3,2) \\
16 & =(x-3)^{2}+(y-2)^{2} & & \text { Square each side. }
\end{aligned}
$$

Applying this same procedure to an unknown center (h, k) and radius r yields a general equation for any circle.

An equation for a circle with center at (h, k) and radius of r units is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Example 1 Equation of a Circle

Write an equation for each circle.
a. center at $(-2,4), d=4$

If $d=4, r=2$.
$(x-h)^{2}+(y-k)^{2}=r^{2} \quad$ Equation of a circle
$[x-(-2)]^{2}+[y-4]^{2}=2^{2} \quad(h, k)=(-2,4), r=2$

$$
(x+2)^{2}+(y-4)^{2}=4 \quad \text { Simplify }
$$

b. center at origin, $r=3$

$$
\begin{array}{rll}
(x-h)^{2}+(y-k)^{2} & =r^{2} & \\
\text { Equation of a circle } \\
(x-0)^{2}+(y-0)^{2} & =3^{2} & (h, k)=(0,0), r=3 \\
x^{2}+y^{2} & =9 & \\
\text { Simplify. }
\end{array}
$$

1 Focus

5-Minute Check

Transparency 10-8 Use as a quiz or review of Lesson 10-7.

Mathematical Background notes are available for this lesson on p. 520D.

What

kind of equations describes the ripples of a splash?

Ask students:

- In order to cause water ripples to form concentric circles, what has to happen? Something must break the surface tension of the water, creating the force that causes the ripples, like the rock in the example.
- If the rock is thrown with a greater force, would you see fewer circles or more circles? more circles

Study Tip

Equation of Circles
Note that the equation of a circle is kept in the form shown above. The terms being squared are not expanded.

Workbook and Reproducible Masters

Chapter 10 Resource Masters

Teaching Geometry With Manipulatives
Masters, pp. 1, 17

- Study Guide and Intervention, pp. 583-584
- Skills Practice, p. 585
- Practice, p. 586
- Reading to Learn Mathematics, p. 587
- Enrichment, p. 588
- Assessment, p. 604

Resource Manager

Transparencies

5-Minute Check Transparency 10-8
Answer Key Transparencies
Technology
GeomPASS: Tutorial Plus, Lesson 19
Interactive Chalkboard
Multimedia Applications: Virtual Activities

2 Teach

EQUATION OF A CIRCLE

In-Class Examples

1 Write an equation for each circle.
a. center at $(3,-3), d=12$ $(x-3)^{2}+(y+3)^{2}=36$
b. center at $(-12,-1), r=8$ $(x+12)^{2}+(y+1)^{2}=64$

Teaching Tip Students should note that the two tangent lines have slopes that indicate they are perpendicular to each other. Students should also remember that a radius is the shortest distance from the tangent to the center of a circle.

2 A circle with a diameter of 10 has its center in the first quadrant. The lines $y=-3$ and $x=-1$ are tangent to the circle. Write an equation of the circle.
$(x-4)^{2}+(y-2)^{2}=25$

GRAPH CIRCLES

In-Class Example

3 a. Graph $(x-2)^{2}+$ $(y+3)^{2}=4$.

b. Graph $(x-3)^{2}+y^{2}=16$.

Example 2 Use Characteristics of Circles

A circle with a diameter of 14 has its center in the third quadrant. The lines $y=-1$ and $x=4$ are tangent to the circle. Write an equation of the circle.
Sketch a drawing of the two tangent lines.
Since $d=14, r=7$. The line $x=4$ is perpendicular to a radius. Since $x=4$ is is a vertical line, the radius lies on a horizontal line. Count 7 units to the left from $x=4$. Find the value of h.

$$
h=4-7 \text { or }-3
$$

Likewise, the radius perpendicular to the line $y=-1$ lies on a vertical line. The value of k is 7 units down from -1 .

$$
k=-1-7 \text { or }-8
$$

The center is at $(-3,-8)$, and the radius is 7 . An equation for the circle is $(x+3)^{2}+(y+8)^{2}=49$.

GRAPH CIRCLES You can analyze the equation of a circle to find information that will help you graph the circle on a coordinate plane.

Study Tip

Graphing
Calculator To use the center and radius to graph a circle, select a suitable window that contains the center of the circle. For a Tl-83 Plus, press ZOOM 5. Then use 9: Circle (on the Draw menu. Put in the coordinates of the center and then the radius so that the screen shows
"Circle ($-2,3,4$)". Then press ENTER.

Example 3 Graph a Circle

a. Graph $(x+2)^{2}+(y-3)^{2}=16$.

Compare each expression in the equation to the standard form.

$$
\begin{array}{rlrl}
(x-h)^{2} & =(x+2)^{2} & (y-k)^{2} & =(y-3)^{2} \\
x-h & =x+2 & y-k & =y-3 \\
-h & =2 & -k & =-3 \\
h & =-2 & k & =3
\end{array}
$$

$r^{2}=16$, so $r=4$.
The center is at $(-2,3)$, and the radius is 4 .
Graph the center. Use a compass set at a width of 4 grid squares to draw the circle.

b. Graph $x^{2}+y^{2}=9$.

Write the equation in standard form.
$(x-0)^{2}+(y-0)^{2}=3^{2}$
The center is at $(0,0)$, and the radius is 3 .
Draw a circle with radius 3, centered at the origin.

If you know three points on the circle, you can find the center and radius of the circle and write its equation.

576 Chapter 10 Circles

D A I L Y INIIERVENIION

Differentiated Instruction

Logical/Mathematical Explain that students will rely heavily on their geometric knowledge and reasoning skills to solve the problems in this lesson. Allow students to explain how to explore and collaborate as they work through examples and exercises. Encourage students to recall definitions, concepts, and theorems to help explain why they use certain methods to solve problems.

Locus
The center of the circle is the locus of points equidistant from the three given points. This is a compound locus because the point satisfies more than one condition.

Example 4 A Circle Through Three Points
CELL PHONES Cell phones work by the transfer of phone signals from one tower to another via satellite. Cell phone companies try to locate towers so that they service multiple communities. Suppose three large metropolitan areas are modeled by the points $A(4,4), B(0,-12)$, and $C(-4,6)$, and each unit equals 100 miles. Determine the location of a tower equidistant from all three cities, and write an equation for the circle.

Explore You are given three points that lie on a circle.
Plan Graph $\triangle A B C$. Construct the perpendicular bisectors of two sides to locate the center, which is the location of the tower. Find the length of a radius. Use the center and radius to write an equation.

Solve

Graph $\triangle A B C$ and construct the perpendicular bisectors of two sides. The center appears to be at $(-2,-3)$. This is the location of the tower.
Find r by using the Distance Formula with the center and any of the three points.

$$
\begin{aligned}
r & =\sqrt{[-2-4]^{2}+[-3-4]^{2}} \\
& =\sqrt{85}
\end{aligned}
$$

Write an equation.

$$
\begin{aligned}
{[x-(-2)]^{2}+[y-(-3)]^{2} } & =(\sqrt{85})^{2} \\
(x+2)^{2}+(y+3)^{2} & =85
\end{aligned}
$$

Examine
You can verify the location of the center by finding the equations of the two bisectors and solving a system of equations. You can verify the radius by finding the distance between the center and another of the three points on the circle.

Check for Understanding

> Concept Check 1. OPEN ENDED Draw an obtuse triangle on a coordinate plane and construct the circle that circumscribes it. 1-2. See margin.
> 2. Explain how the definition of a circle leads to its equation.

Guided Practice Write an equation for each circle.

GUIDED PRACTICE KEY	
Exercises	Examples
$3,4,8$	1
5	2
6	3
7	3,4

3. center at $(-3,5), r=10(x+3)^{2}+(y-5)^{2}=100$
4. center at origin, $r=\sqrt{7} x^{2}+y^{2}=7$
5. diameter with endpoints at $(2,7)$ and $(-6,15)(x+2)^{2}+(y-11)^{2}=32$

Graph each equation. 6-7. See margin.
6. $(x+5)^{2}+(y-2)^{2}=9$
7. $(x-3)^{2}+y^{2}=16$
8. Write an equation of a circle that contains $M(-2,-2), N(2,-2)$, and $Q(2,2)$. Then graph the circle. $x^{2}+y^{2}=8$; See margin for graph.
6.

7.

8.

4 ELECTRICITY Strategically located substations are extremely important in the transmission and distribution of a power company's electric supply. Suppose three substations are modeled by the points $D(3,6), E(-1,0)$, and $F(3,-4)$. Determine the location of a town equidistant from all three substations, and write an equation for the circle.
$(4,1) ;(x-4)^{2}+(y-1)^{2}=26$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 10.
- include examples of how to write the equation for a circle and how to graph a circle given various information.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

Answers

1. Sample answer:

2. A circle is the locus of all points in a plane (coordinate plane) a given distance (the radius) from a given point (the center). The equation of a circle is written from knowing the location of the given point and the radius.

About the Exercises... Organization by Objective
 - Equation of a Circle: 10-23
 - Graph Circles: 24-31

Odd/Even Assignments

Exercises 10-33 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 11, 15-21 odd, 25-37 odd, 41, 43, 45-56
Average: 11-41 odd, 43, 45-56
Advanced: 10-42 even, 43-56

Answers

24.

25.

26.

Application 9. WEATHER Meteorologists track severe storms using Doppler radar. A polar grid is used to measure distances as the storms progress. If the center of the radar screen is the origin and each ring is 10 miles farther from the center, what is the equation of the fourth ring? $x^{2}+y^{2}=1600$

太 indicates increased difficulty

Practice and Apply

Honmerwath	Help
For	\vdots
See	
Exercises	Examples
$10-17$	1
$18-23$	2
$24-29$	3
$30-31$	
Extra Practice	4
See page 776.	

11. $(x+2)^{2}+$
$(y+8)^{2}=25$
12. $(x-1)^{2}+$
$(y+4)^{2}=17$
13. $x^{2}+y^{2}=36$
14. $(x-5)^{2}+$
$(y-10)^{2}=49$
15. $x^{2}+(y-5)^{2}=$

100
16. $(x+8)^{2}+$
$(y-8)^{2}=64$
17. $(x+3)^{2}+$
$(y+10)^{2}=144$
18. $(x+3)^{2}+$
$(y-6)^{2}=9$
20. $(x+11)^{2}+$
$(y-2)^{2}=32$
21. $(x+2)^{2}+$
$(y-1)^{2}=10$
27.

28.

29.

AERODYNAMICS For Exercises 35-37, use the following information.

The graph shows cross sections of spherical sound waves produced by a supersonic airplane. When the radius of the wave is 1 unit, the plane is 2 units from the origin. A wave of radius 3 occurs when the plane is 6 units from the center.

35. $x^{2}+y^{2}=49$

Space Travel.
The Apollo program was designed to successfully land a man on the moon. The first landing was July 20, 1969. There were a total of six landings on the moon during 1969-1972. Source: wwwinfoplease.com
35. Write the equation of the circle when the plane is 14 units from the center.
36. What type of circles are modeled by the cross sections? concentric circles
37. What is the radius of the circle for a plane 26 units from the center? 13
38. The equation of a circle is $(x-6)^{2}+(y+2)^{2}=36$. Determine whether the line $y=2 x-2$ is a secant, a tangent, or neither of the circle. Explain. See margin.
39. The equation of a circle is $x^{2}-4 x+y^{2}+8 y=16$. Find the center and radius of the circle. $(2,-4) ; r=6$
40. WEATHER The geographic center of Tennessee is near Murfreesboro. The closest Doppler weather radar is in Nashville. If Murfreesboro is designated as the origin, then Nashville has coordinates $(-58,55)$, where each unit is one mile If the radar has a radius of 80 miles, write an equation for the circle that represents the radar coverage from Nashville. $(x+58)^{2}+(y-55)^{2}=6400$
41. RESEARCH Use the Internet or other materials to find the closest Doppler radar to your home. Write an equation of the circle for the radar coverage if your home is the center. See students' work.
42. SPACE TRAVEL Apollo 8 was the first manned spacecraft to orbit the moon at an average altitude of 185 kilometers above the moon's surface. Determine an equation to model a single circular orbit of the Apollo 8 command module if the radius of the moon is 1740 kilometers. Let the center of the moon be at the origin. $x^{2}+y^{2}=3,705,625$
43. CRITICAL THINKING Determine the coordinates of any intersection point of the graphs of each pair of equations.
a. $x^{2}+y^{2}=9, y=x+3(0,3)$ or $(-3,0)$
b. $x^{2}+y^{2}=25, x^{2}+y^{2}=9$ none
c. $(x+3)^{2}+y^{2}=9,(x-3)^{2}+y^{2}=9(0,0)$
44. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
What kind of equations describe the ripples of a splash?
Include the following in your answer:

- the general form of the equation of a circle, and
- the equations of five ripples if each ripple is 3 inches farther from the center.
www.geometryonline.com/self_check_quiz
Lesson 10-8 Equations of Circles 57

Answers

38. secant, because it intersects the circle at $(0,-2)$ and $(2.4,2.8)$
39. Sample answer: Equations of concentric circles; answers should include the following.

- $(x-h)^{2}+(y-k)^{2}=r^{2}$
- $x^{2}+y^{2}=9, x^{2}+y^{2}=36, x^{2}+y^{2}=81$, $x^{2}+y^{2}=144, x^{2}+y^{2}=225$

Enrichment, p. 588

Equations of Circles and Tangents Recall that the circle whose radius is r and wh
center has coordinates (h, k) is the graph of center has coordinates (h, k) is the craph of
$(x-h)^{2}+(y-k)^{2}=r$. You can use this idea and
what you know what you know about circles and tangents to find
an equation of the circle that has a given center an equation of the circle t hat
and is tangent to a given line.

Use the following steps to find an equation for the circle that has cen- ter $C(-2,3)$ and is tangent to the graph $y=2 x-3$. Refer to the figure.

 1. State the slope of the line ℓ that has equation $y=2 x-3$Study Guide and Intervention, p. 583 (shown) and p. 584

Example

Write an equation for a circle with center $(-1,3)$ and radius 6 .

Exercis

Write an equation for each circle.

1. center at $(0,0), r=8$	2. center at $(-2,3), r=5$
$x^{2}+y^{2}=64$	$(x+2)^{2}+(y-3)^{2}=25$

3. center at $(2,-4), r=1$	4. center at $(-1,-4), r=2$
$(x-2)^{2}+(y+4)^{2}=1$	$(x+1)^{2}+(y+4)^{2}=4$

5. center at $(-2,-6)$, diameter $=8$	6. center at $\left(-\frac{1}{2}, \frac{1}{4}\right), r=\sqrt{3}$
$(x+2)^{2}+(y+6)^{2}=16$	$\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{1}{4}\right)^{2}=3$

7. center at the origin, diameter $=4$	8. center at $\left(1,-\frac{5}{8}\right), r=\sqrt{5}$
$x^{2}+y^{2}=4$	$(x-1)^{2}+\left(y+\frac{5}{8}\right)^{2}=5$
9. Find the center and radius of a circle with equation $x^{2}+y^{2}=20$.	

center $(0,0)$; radius $2 \sqrt{5}$	
10. Find the center and radius of a circle with equation $(x+4)^{2}+(y+3)^{2}=16$.	
center $(-4,-3)$; radius 4	

11. EARTHQUAKES When an earthquake strikes, it releases seismic waves that travel in concentric circles rrom the epicenter or the earthquake. Seismograph stations monitor
seismic activity and record the intensity and duration of earthuakes. Suppose a station determines that the epicenter of an earthquake is located about 50 kilometers from th
station.If the station is located at the origin, write an equation for the circle that represents a possible epicenter of the earthquake. $x^{2}+y^{2}=2500$

Reading to Learn

Mathematics, p. 587

ELL
Pre-Activity What kind of equations describe the ripples of a splash? Read the introduction to Lesson $10-8$ at the top of page 575 in your textbook In a series of concentric circles, what is the same about all the circles, and
nhat is different? Sample answer: They all have the same center, what different radii.
Reading the Lesson

2. Write an equation for each circle.
a. center at origin, $r=8 x^{2}+y^{2}=64$
b. center at $(3,9) r=1(x-3)^{2}+(y)=0$
b. center at $(3,9), r=1(x-3)^{2}+(y-9)^{2}=1$
c. center at $(-5,-6), r=10(x+5)^{2}+(y+6)^{2}=100$
c. center at $\left(-5,-6, r=10\left(x+5+(y+6)^{2}\right.\right.$
d. center at $(0,-7), r=7 x^{2}+(y+7)^{2}=49$
e. center at $(12,0), d=12(x-12)^{2}+y^{2}=36$
f. center at $(-4,8), d=22(x+4)^{2}+(y-8)^{2}=$
f. center at ($(4,8,8), d=22(x+4)^{2}+(y-8)^{2}=121$
g. center at $(4.5,-3.5), r=1.5(x-4.5)^{2}+(y+3.5)^{2}=2.25$
g. center at $(4.5,-3.5), r=1.5(x-4.5)^{2}$
h. center at $(0,0,0), r=\sqrt{13} x^{2}+y^{2}=13$

Helping You Remember
4. A good way to remember a new mathematical formula or equation is to relate it to one you already know. How can you use the e intantancerormulat ato help you remember the
standard equation of a circle? Sample answer: Use the Distance Formula to the circle. Square each side to obtain the standard equation of a circle.

Lesson 10-8 Equations of Circles 579

4 Assess

Open-Ended Assessment

Speaking Allow pairs of students to quiz each other with selected questions from the Practice and Apply section. Let students take turns calling out the equations of circles, naming the centers of circles, and stating the lengths of radii.

Assessment Options

Quiz (Lessons 10-7 and 10-8)
is available on p. 604 of the Chapter 10 Resource Masters.
45. Which of the following is an equation of a circle with center at $(-2,7)$ and a diameter of 18? B
(A) $x^{2}+y^{2}-4 x+14 y+53=324$
(B) $x^{2}+y^{2}+4 x-14 y+53=81$
(C) $x^{2}+y^{2}-4 x+14 y+53=18$
(D) $x^{2}+y^{2}+4 x-14 y+53=3$
46. ALGEBRA Jordan opened a one-gallon container of milk and poured one pint of milk into his glass. What is the fractional part of one gallon left in the container? D
(A) $\frac{1}{8}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $\frac{7}{8}$

Maintain Your Skills

Mixed Review Find each measure if $E X=24$ and $D E=7$. (Lesson 10-7)
47. $A X 24$
48. $D X 25$
49. QX 18
50. TX 32

Find x. (Lesson 10-6)
51.

35

For Exercises 54 and 55, use the following information.
Triangle $A B C$ has vertices $A(-3,2), B(4,-1)$, and $C(0,-4)$.
54. What are the coordinates of the image after moving $\triangle A B C 3$ units left and 4 units up? (Lesson 9-2) $(-6,6),(1,3),(-3,0)$
55. What are the coordinates of the image of $\triangle A B C$ after a reflection in the y-axis? (Lesson 9-1) $(3,2),(-4,-1),(0,-4)$
56. CRAFTS For a Father's Day present, a kindergarten class is making foam plaques. The edge of each plaque is covered with felt ribbon all the way around with 1 inch overlap. There are 25 children in the class. How much ribbon does the teacher need to buy for all 25 children to complete this craft? (Lesson 1-6) 1125 in. or 31.25 yd

Internet Project

"Geocaching" Sends Folks on a Scavenger Hunt

It's time to complete your project. Use the information and data you have gathered about designing a treasure hunt to prepare a portfolio or Web page. Be sure to include illustrations and/or tables in the presentation.
www.geometryonline.com/webquest

Vocabulary and Concept Check

arc (p. 530)
center (p. 522)
central angle (p. 529)
chord (p. 522)
circle (p. 522)
circumference (p. 523) circumscribed (p. 537) diameter (p. 522) inscribed (p. 537) intercepted (p. 544)
major arc (p. 530) minor arc (p. 530) pi (π) (p. 524) point of tangency (p. 552)
radius (p. 522)
secant (p. 561)
semicircle (p. 530)
tangent (p. 552)

A complete list of postulates and theorems can be found on pages R1-R8.
Exercises Choose the letter of the term that best matches each phrase.

1. arcs of a circle that have exactly one point in common a
2. a line that intersects a circle in exactly one point j
3. an angle with a vertex that is on the circle and with sides containing chords of the circle h
4. a line that intersects a circle in exactly two points \mathbf{i}
5. an angle with a vertex that is at the center of the circle \mathbf{b}
6. arcs that have the same measure f
7. the distance around a circle d
8. circles that have the same radius g
9. a segment that has its endpoints on the circle \mathbf{C}
10. circles that have different radii, but the same center \mathbf{e}
a. adjacent arcs
b. central angle
c. chord
d. circumference
e. concentric circles
f. congruent arcs
g. congruent circles
h. inscribed angle
i. secant
j. tangent

Lesson-by-Lesson Review

10-1 Circles and Circumference

See pages

 522-528.
Concept Summary

- The diameter of a circle is twice the radius.
- The circumference C of a circle with diameter d or a radius of r can be written in the form $C=\pi d$ or $C=2 \pi r$.

Example

Find r to the nearest hundredth if $C=76.2$ feet.

$$
\begin{aligned}
C & =2 \pi r & & \text { Circumference formula } \\
76.2 & =2 \pi r & & \text { Substitution } \\
\frac{76.2}{2 \pi} & =r & & \text { Divide each side by } 2 \pi . \\
12.13 & \approx r & & \text { Use a calculator. }
\end{aligned}
$$

11. 7.5 in.; 47.12 in. $12.12 .8 \mathrm{~m}, 40.21 \mathrm{~m}$

Exercises The radius, diameter, or circumference of a circle is given. Find the missing measures. Round to the nearest hundredth if necessary. See Example 4 on page 524.
11. $d=15 \mathrm{in},. r=?, C=$?
13. $C=68 \mathrm{yd}, r=?$
12. $r=6.4 \mathrm{~m}, d=$?,$~ C=?$
13. $C=68 \mathrm{yd}, r=?, \quad, \quad$?
15. $C=138 \mathrm{ft}, r=$?,$d=$?
14. $d=52 \mathrm{~cm}, r=$?,$C=$?
16. $r=11 \mathrm{~mm}, d=$?,$C=$?
$21.96 \mathrm{ft} ; 43.93 \mathrm{ft}$
$22 \mathrm{~mm} ; 69.12 \mathrm{~mm}$
www.geometryonline.com/vocabulary_review
Chapter 10 Study Guide and Review 581

Foldables Study Organizer
For more information about Foldables, see Teaching Mathematics with Foldables.

Have students look through the chapter to make sure they have included notes and examples in their Foldables for each lesson of Chapter 10.
Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Vocabulary and Concept Check

- This alphabetical list of vocabulary terms in Chapter 10 includes a page reference where each term was introduced.
- Assessment A vocabulary test/review for Chapter 10 is available on $p .602$ of the Chapter 10 Resource Masters.

Lesson-by-Lesson Review

For each lesson,

- the main ideas are summarized,
- additional examples review concepts, and
- practice exercises are provided.

Vocabulary PuzzleMaker

ELL The Vocabulary PuzzleMaker software improves students' mathematics vocabulary using four puzzle formatscrossword, scramble, word search using a word list, and word search using clues. Students can work on a computer screen or from a printed handout.

MindJogger Videoquizzes

ELL MindJogger Videoquizzes provide an alternative review of concepts presented in this chapter. Students work in teams in a game show format to gain points for correct answers. The questions are presented in three rounds.
Round 1 Concepts (5 questions)
Round 2 Skills (4 questions)
Round 3 Problem Solving (4 questions)

10-2 Angles and Arcs

See pages

529-535.

Concept Summary

- The sum of the measures of the central angles of a circle with no interior points in common is 360 .
- The measure of each arc is related to the measure of its central angle.
- The length of an arc is proportional to the length of the circumference.

Examples

In $\odot P, m \angle M P L=65$ and $\overline{N P} \perp \overline{P L}$.

1 Find $m \widehat{N M}$.

$\widehat{N M}$ is a minor arc, so $m \widehat{N M}=m \angle N P M$. $\angle J P N$ is a right angle and $m \angle M P L=65$, so $m \angle N P M=25$.

$m \widehat{N M}=25$
2 Find $m \widehat{N J K}$.
$\widehat{N J K}$ is composed of adjacent arcs, $\overparen{N J}$ and $\overparen{J K} . \angle M P L \cong \angle J P K$, so $m \angle J P K=65$.

$$
\begin{aligned}
m \overparen{N J} & =m \angle N P J \text { or } 90 & & \angle N P J \text { is a right angle } \\
m \widehat{N J K} & =m \overparen{N J}+m \widehat{J K} & & \text { Arc Addition Postulate } \\
m \widehat{N J K} & =90+65 \text { or } 155 & & \text { Substitution }
\end{aligned}
$$

Exercises Find each measure.

See Example 1 on page 529.
17. $m\lceil C 60$
18. $m \overparen{B C} 123$
19. $m \overparen{B X} 117$
20. $m \widehat{B C A} 180$

In $\odot G, m \angle A G B=30$ and $\overline{C G} \perp \overline{G D}$.
Find each measure. See Example 2 on page 531.
21. $m \overparen{A B} 30$
22. $m \overparen{B C} 60$
23. $m \widehat{F D} 30$
24. $m \widehat{C D F} 120$
25. $m \widehat{B C D} 150$
26. $m \widehat{F A B} 180$

Find the length of the indicated arc in each $\odot I$. See Example 4 on page 532.
27. $\widehat{D G}$ if $m \angle D G I=24$ and $r=6 \frac{22}{5} \pi$
28. $\overline{W N}$ if $\triangle I W N$ is equilateral and
 $W N=5 \frac{5}{3} \pi$

10-3 Arcs and Chords

See pages

 536-543.
Concept Summary

- The endpoints of a chord are also the endpoints of an arc.
- Diameters perpendicular to chords bisect chords and intercepted arcs.

Examples

Circle L has a radius of 32 centimeters.
$\overline{L H} \perp \overline{G J}$, and $G J=40$ centimeters. Find $L K$.
Draw radius $\overline{L J} . L J=32$ and $\triangle L K J$ is a right triangle.
$\overline{L H}$ bisects $\overline{G J}$, since they are perpendicular.
$\begin{array}{rlrl}K J & =\frac{1}{2}(G J) & & \text { Definition of segment bisector } \\ & =\frac{1}{2}(40) \text { or } 20 & G J=40, \text { and simplify. }\end{array}$

Use the Pythagorean Theorem to find $L K$.

$(L K)^{2}+(K J)^{2}$	$=(L J)^{2}$		Pythagorean Theorem
$(L K)^{2}+20^{2}$	$=32^{2}$		$K J=20, L J=32$
$(L K)^{2}+400$	$=1024$		Simplify.
$(L K)^{2}$	$=624$		Subtract 400 from each side.
$L K$	$=\sqrt{624}$		Take the square root of each side.
$L K$	≈ 24.98		Use a calculator.

Exercises In $\odot R, S U=20, \gamma W=20$, and $m \widehat{Y X}=45$.
Find each measure. See Example 3 on page 538.
29. $S V 10$
30. WZ 10
31. UV 10
32. $m \overline{Y W} 90$
33. $m \overparen{S T} 45$
34. $m \overparen{S U} 90$

10-4 Inscribed Angles

See pages

544-551.

Concept Summary

- The measure of the inscribed angle is half the measure of its intercepted arc.
- The angles of inscribed polygons can be found by using arc measures.

ALGEBRA Triangles FGH and $F H J$ are inscribed in $\odot K$ with $\overparen{F G} \cong \overparen{F J}$. Find x if $m \angle 1=6 x-5$, and $m \angle 2=7 x+4$. $F J H$ is a right angle because $\widehat{F J H}$ is a semicircle.

$$
\begin{aligned}
m \angle 1+m \angle 2+m \angle F J H & =180 & & \text { Angle Sum Theorem } \\
(6 x-5)+(7 x+4)+90 & =180 & & m \angle 1=6 x-5, m \angle 2 \\
13 x+89 & =180 & & \text { Simplify. } \\
x & =7 & & \text { Solve for } x .
\end{aligned}
$$

Exercises Find the measure of each numbered angle.
See Example 1 on page 545.
35.

36.

90
37.

Find the measure of each numbered angle for each situation given.
See Example 4 on page 547.
38. $m \overline{G H}=78 m \angle 1=m \angle 3=39, m \angle 2=51$
39. $m \angle 2=2 x, m \angle 3=x \quad m \angle 1=m \angle 3=30, m \angle 2=60$
40. $m \widehat{m H}=114 m \angle 2=57, m \angle 3=m \angle 1=33$

10-5 Tangents

See pages
$552-558$.
nen Concept Summary

- A line that is tangent to a circle intersects the circle in exactly one point.
- A tangent is perpendicular to a radius of a circle.
- Two segments tangent to a circle from the same exterior point are congruent.

Example ALGEBRA Given that the perimeter of $\triangle A B C=25$, find x. Assume that segments that appear tangent to circles are tangent. In the figure, $\overline{A B}$ and $\overline{A C}$ are drawn from the same exterior point and are tangent to $\odot Q$. So $\overline{A B} \cong \overline{A C}$.
The perimeter of the triangle, $A B+B C+A C$, is 25 .

$$
\begin{aligned}
A B+B C+A C & =25 & & \text { Definition of perimeter } \\
3 x+3 x+7 & =25 & & A B=B C=3 x, A C=7 \\
6 x+7 & =25 & & \text { Simplify. } \\
6 x & =18 & & \text { Subtract } 7 \text { from each side. } \\
x & =3 & & \text { Divide each side by } 6 .
\end{aligned}
$$

Exercises Find x. Assume that segments that appear to be tangent are tangent.
See Example 3 on page 554.
41.

$9 \quad 42$.

12
43.

10-6 Secants, Tangents, and Angle Measures

See pages 561-568.

Concept Summary

- The measure of an angle formed by two secant lines is half the positive difference of its intercepted arcs.
- The measure of an angle formed by a secant and tangent line is half its intercepted arc.

Find x.

$$
\begin{array}{rlrl}
m \angle V & =\frac{1}{2}(m \widehat{X T}-m \widehat{W U}) \\
34 & =\frac{1}{2}(128-x) & & \text { Substitution } \\
-30 & =-\frac{1}{2} x & & \text { Simplify. } \\
x & =60 & & \text { Multiply each side by }-2 .
\end{array}
$$

Exercises Find \boldsymbol{x}. See Example 3 on page 563.
44.

2245.

10-7 Special Segments in a Circle

See pages 569-574.

Concept Summary

- The lengths of intersecting chords in a circle can be found by using the products of the measures of the segments.
- The secant segment product also applies to segments that intersect outside the circle, and to a secant segment and a tangent.

Find a, if $F G=18, G H=42$, and $F K=15$.
Let $K J=a$.
$F K \cdot F J=F G \cdot F H \quad$ Secant Segment Products
$15(a+15)=18(18+42) \quad$ Substitution

$15 a+225$	$=1080$		Distributive Property
$15 a$	$=855$		Subtract 225 from each side.
a	$=57$		Divide each side by 15.

Exercises Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent. See Examples 3 and 4 on pages 570 and 571.
47.

17.1
48.

49.

Answers

54.

55.

57.

Answers (page 587)

1. Sample answer: A chord is a segment that has its endpoints on a circle. A secant contains a chord and is a line that intersects a circle in two points. A tangent is a line that intersects a circle in exactly one point and no point of the tangent lies in the interior of the circle.
2. Find the midpoint of the diameter using the Midpoint Formula with the coordinates of the diameter's endpoints.
3.

10-8 Equations of Circles

See pages Concept Summary

- The coordinates of the center of a circle (h, k) and its radius r can be used to write an equation for the circle in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.
- A circle can be graphed on a coordinate plane by using the equation written in standard form.
- A circle can be graphed through any three noncollinear points on the coordinate plane.

1 Write an equation of a circle with center $(-1,4)$ and radius 3 .
Since the center is at $(-1,4)$ and the radius is $3, h=-1, k=4$, and $r=3$.
$(x-h)^{2}+(y-k)^{2}=r^{2} \quad$ Equation of a circle
$[x-(-1)]^{2}+(y-4)^{2}=3^{2} \quad h=-1, k=4$, and $r=3$
$(x+1)^{2}+(y-4)^{2}=9 \quad$ Simplify.
2 Graph $(x-2)^{2}+(y+3)^{2}=6.25$.
Identify the values of h, k, and r by writing the equation in standard form.
$(x-2)^{2}+(y+3)^{2}=6.25$
$(x-2)^{2}+[y-(-3)]^{2}=2.5^{2}$
$h=2, k=-3$, and $r=2.5$

Graph the center $(2,-3)$ and use a compass to construct a circle with radius 2.5 units.

Exercises Write an equation for each circle. See Examples 1 and 2 on pages 575 and 576 .
50. center at $(0,0), r=\sqrt{5} x^{2}+y^{2}=5$
51. center at $(-4,8), d=6(x+4)^{2}+(y-8)^{2}=9$
52. diameter with endpoints at $(0,-4)$ and $(8,-4)(x-4)^{2}+(y+4)^{2}=16$
53. center at $(-1,4)$ and is tangent to $x=1(x+1)^{2}+(y-4)^{2}=4$

Graph each equation. See Example 3 on page 576.
54. $x^{2}+y^{2}=2.25$
55. $(x-4)^{2}+(y+1)^{2}=9$
54-55. See margin.

For Exercises 56 and 57, use the following information.
A circle graphed on a coordinate plane contains $A(0,6), B(6,0)$, and $C(6,6)$.
See Example 4 on page 577.
56. Write an equation of the circle. $(x-3)^{2}+(y-3)^{2}=18$
57. Graph the circle. See margin.
23. Sample answer:

Given: $\odot X$ with diameters $\overline{R S}$ and $\overline{T V}$
Prove: $\overparen{R T} \cong \widetilde{V S}$

Proof:

Statements (Reasons)

1. $\odot X$ with diameters $\overline{R S}$ and $\overline{T V}$ (Given)
2. $\angle R X T \cong \angle V X S$ (Vertical $\stackrel{1}{ }$ are \cong.)
3. $m \angle R X T=m \angle V X S$ (Def. of $\cong \angle s)$
4. $m \overparen{R T}=m \angle R X T, m \overparen{V S}=m \angle V X S$ (Measure of arc equals measure of its central angle.)
5. $m \widehat{R T}=m \widehat{V S}$ (Substitution)
6. $\widetilde{R T} \cong \overparen{V S}$ (Def. of $\cong \operatorname{arcs}$)

Vocabulary and Concepts

1. Describe the differences among a tangent, a secant, and a chord of a circle. 1-2. See margin.
2. Explain how to find the center of a circle given the coordinates of the endpoints of a diameter.

Skills and Applications

3. Determine the radius of a circle with circumference 25π units. Round to the nearest tenth. 12.5 units

For Questions 4-11, refer to $\odot N$.
4. Name the radii of $\odot N . \overline{N A}, \overline{N B}, \overline{N C}, \overline{N D}$
5. If $A D=24$, find $C N$. 12
6. Is $E D>A D$? Explain. No; diameters are the longest chords of a circle.

7. If $A N$ is 5 meters long, find the exact circumference of $\odot N$. $10 \pi \mathrm{~m}$
9. If $m \widehat{B C}=30$ and $\widehat{A B} \cong \widehat{C D}$, find $m \widehat{A B}$.
75
8. If $m \angle B N C=20$, find $m \overparen{B C}$. 20
11. If $m \widehat{A E}=75$, find $m \angle A D E$. 37.5
10. If $\overline{B E} \cong \overline{E D}$ and $m \widehat{E D}=120$, find $m \widehat{B E}$. 120
gent are tangent.
12. $15 \xrightarrow{15} 13$.

14.

15.

16.

1019.

20. AMUSEMENT RIDES Suppose a Ferris wheel is 50 feet wide. Approximately how
far does a rider travel in one rotation of the wheel? 157 ft
21. Write an equation of a circle with center at $(-2,5)$ and a diameter of 50. $(x+2)^{2}+(y-5)^{2}=625$
22. Graph $(x-1)^{2}+(y+2)^{2}=4$. See margin.
23. PROOF Write a two-column
proof.
Given: $\odot X$ with diameters $\overline{R S}$ and $\overline{T V}$
Prove: $\widehat{R T} \cong \widehat{V S}$
See margin.
25. STANDARDIZED TEST PRACTICE

24. CRAFTS Takita is making bookends out of circular wood pieces as shown at the right. What is the height of the cut piece of wood? about 7.1 in .
 $A B C D$ is a rectangle. Find $D B . A$
(A) r
(B) $r \frac{\sqrt{2}}{2}$
(C) $r \sqrt{3}$
(D) $r \frac{\sqrt{3}}{2}$

wwww.geometryonline.com/chapter_test
Chapter 10 Practice Test 587

Portfolio Suggestion

Introduction After completing a chapter containing several concepts, students might benefit from going back and categorizing the concepts they found easy or challenging.
Ask Students Label two sheets of paper "Chapter 10-Concepts I Already Knew" and "Chapter 10-Concepts I Learned." Go back through each lesson and note the concepts in the lesson. Then categorize them on their pieces of paper. You can either write the name of the concept, explain it in your own words, or draw an example. Place these sheets in your portfolio.

Assessment Options
Vocabulary Test A vocabulary test/review for Chapter 10 can be found on p. 602 of the Chapter 10 Resource Masters.

Chapter Tests There are six Chapter 10 Tests and an OpenEnded Assessment task available in the Chapter 10 Resource Masters.

Chapter 10 Tests			
Form	Type	Level	Pages
1	MC	basic	$589-590$
2A	MC	average	$591-592$
2B	MC	average	$593-594$
2C	FR	average	$595-596$
2D	FR	average	$597-598$
3	FR	advanced	$599-600$
MC $=$ multiple-choice questions FR $=$ free-response questions			

Open-Ended Assessment

Performance tasks for Chapter 10 can be found on p. 601 of the Chapter 10 Resource Masters. A sample scoring rubric for these tasks appears on p. A31.
Unit 3 Test A unit test/review can be found on pp. 609-610 of the Chapter 10 Resource Masters.

Use the networkable
ExamView ${ }^{\circledR}$ Pro to:

- Create multiple versions of tests.
- Create modified tests for Inclusion students.
- Edit existing questions and add your own questions.
- Use built-in state curriculum correlations to create tests aligned with state standards.
- Apply art to your tests from a program bank of artwork.

These two pages contain practice questions in the various formats that can be found on the most frequently given standardized tests.

A practice answer sheet for these two pages can be found on p. A1 of the Chapter 10 Resource Masters.

Standardized Test Practice
Student Recording Sheet, p. A1


```
Select the best answer from the choices given and fill in the corresponding oval.
```


Part2 Short Response/Gerid In
Solve the problem and write your answer in the blank.
For Questions 11, 12, 13,14 , and 15 , also enter your answer by writing each number
or symbol in a box. Then fill in the corresponding oval or symbol in a box. Then fill in the corresponding oval for that number or symbol

Record your answers for Questions 16-17 on the back of this paper

Additional Practice

See pp. 607-608 in the Chapter 10 Resource Masters for additional standardized test practice.

Part 1 Multiple Choice

Record your answer on the answer sheet provided by your teacher or on a sheet of paper.

1. Which of the following shows the graph of $3 y=6 x-9$? (Prerequisite Skill) A
(A)

(B)

(C)

(D)

2. In Hyde Park, Main Street and Third Avenue do not meet at right angles. Use the figure below to determine the measure of $\angle 1$ if $m \angle 1=6 x-5$ and $m \angle 2=3 x+13$. (Lesson 1-5) \mathbf{C}
(A) 6
(B) 18
(C) 31
(D) 36

3. Part of a proof is shown below. What is the reason to justify Step b? (Lesson 2-5) A

Given: $4 x+\frac{4}{3}=12 \quad$ Prove: $x=\frac{8}{3}$
Statements
Reasons
a. $4 x+\frac{4}{3}=12$
a. Given
b. $3\left(4 x+\frac{4}{3}\right)=3(12)$
b. ?
(A) Multiplication Property
(B) Distributive Property
(C) Cross products
(D) none of the above
4. If an equilateral triangle has a perimeter of $(2 x+9)$ miles and one side of the triangle measures $(x+2)$ miles, how long (in miles) is the side of the triangle? (Lesson 4-1) B
(A) 3
(B) 5
(C) 9
(D) 15
5. A pep team is holding up cards to spell out the school name. What symmetry does the card shown below have? (Lesson 9-1) A
(A) only line symmetry
(B) only point symmetry
(C) both line and point symmetry
(D) neither line nor point symmetry

Use the figure below for Questions 6 and 7.

6. In circle F, which are chords? (Lesson 10-1) D
(A) $\overline{A D}$ and $\overline{\mathrm{EF}}$
(B) $\overline{A F}$ and $\overline{B C}$
(C) $\overline{E F}, \overline{D F}$, and $\overline{A F}$
(D) $\overline{A D}$ and $\overline{B C}$

7. In circle F, what is the measure of $\overparen{E A}$ if $m \angle D F E$ is 36 ? (Lesson 10-2) C
(A) 54
(B) 104
(C) 144
(D) 324
8. Which statement is false? (Lesson 10-3) C
(A) Two chords that are equidistant from the center of a circle are congruent.
(B) A diameter of a circle that is perpendicular to a chord bisects the chord and its arc.
(C) The measure of a major arc is the measure of its central angle.
(D) Minor arcs in the same circle are congruent if their corresponding chords are congruent.
9. Which of the segments described could be a secant of a circle? (Lesson 10-6) D
(A) intersects exactly one point on a circle
(B) has its endpoints on a circle
(C) one endpoint at the center of the circle
(D) intersects exactly two points on a circle

ExamView ${ }^{\circledR}$ Pro

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and state proficiency tests can be found on this CD-ROM.

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.
10. What is the shortest side of quadrilateral DEFG? (Lesson 5-3) $\overline{F G}$

11. An architect designed a house and a garage that are similar in shape. How many feet long is $\overline{S T}$? (Lesson 6-2) 20

12. Two triangles are drawn on a coordinate grid. One has vertices at $(0,1),(0,7)$, and $(6,4)$. The other has vertices at $(7,7),(10,7)$, and $(8.5,10)$. What scale factor can be used to compare the smaller triangle to the larger? (Lesson 9-5) 2

Use the figure below for Questions 13-15.
13. Point D is the center of the circle. What is $m \angle A B C$?
(Lesson 10-4) 90

14. $\overline{A E}$ is a tangent

If $A D=12$ and $F E=18$,
how long is $\overline{A E}$ to the nearest tenth unit? (Lesson 10-5) 27.5
15. Chords $\overline{J F}$ and $\overline{B C}$ intersect at K. If $B K=8$, $K C=12$, and $K F=16$, find $J K$. (Lesson 10-7) 6
www.geometryonline.com/standardized_test

Test-Taking Tip

Question 4
If a question does not provide you with a figure that represents the problem, draw one yourself. Label the figure with the given information.

Part 3 Extended Response

Record your answers on a sheet of paper. Show your work
16. The Johnson County High School flag is shown below. Points have been added for reference.

a. Which diagonal segments would have to be congruent for $V W X Y$ to be a rectangle? (Lesson 8-3) $\overline{V X}$ and $\overline{W Y}$
b. Suppose the length of rectangle $V W X Y$ is 2 more than 3 times the width and the perimeter is 164 inches. What are the dimensions of the flag? (Lesson 1-6) 20 by 62
17. The segment with endpoints $A(1,-2)$ and $B(1,6)$ is the diameter of a circle.
a. Graph the points and draw the circle. (Lesson 10-1) See margin.
b. What is the center of the circle? (Lesson 10-1) (1, 2)
c. What is the length of the radius? (Lesson 10-8) 4
d. What is the circumference of the circle? (Lesson 10-8) 8π units
e. What is the equation of the circle? (Lesson 10-8) $(x-1)^{2}+(y-2)^{2}=16$

Chapter 10 Standardized Test Practice 589

Evaluating ExtendedResponse Questions

Extended-Response questions are graded by using a multilevel rubric that guides you in assessing a student's knowledge of a particular concept.

Goal for Question 16:

Determine the relationship between segment lengths for the flag to be a parallelogram, and find the dimensions of the flag.
Goal for Question 17: Using a segment in a coordinate plane as a diameter, write an equation for a circle and find its center, radius, circumference.

Sample Scoring Rubric: The following rubric is a sample scoring device. You may wish to add more detail to this sample to meet your individual scoring needs.

Score	Criteria
4	A correct solution that is supported by well-developed, accurate explanations
3	A generally correct solution, but may contain minor flaws in reasoning or computation
2	A partially correct interpretation and/or solution to the problem
1	A correct solution with no supporting evidence or explanation
0	An incorrect solution indicating no mathematical understanding of the concept or task, or no solution is given

Answer

17a.

Pages 539-543, Lesson 10-3
37. Given: $\odot O, \overline{O S} \perp \overline{R T}$,

$$
\overline{O V} \perp \overline{U W}, \overline{O S} \cong \overline{O V}
$$

Prove: $\overline{R T} \cong \overline{U W}$

Proof:

Statements (Reasons)

1. $\overline{O T} \cong \overline{O W}$ (All radii of a \odot are \cong.)
2. $\overline{O S} \perp \overline{R T}, \overline{O V} \perp \overline{U W}, \overline{O S} \cong \overline{O V}$ (Given)
3. $\angle O S T, \angle O V W$ are right angles. (Def. of \perp lines)
4. $\triangle S T O \cong \triangle V W O(H L)$
5. $\overline{S T} \cong \overline{V W}$ (CPCTC)
6. $S T=V W$ (Definition of \cong segments)
7. $2(S T)=2(V W)$ (Multiplication Property)
8. $\overline{O S}$ bisects $\overline{R T} ; \overline{O V}$ bisects $\overline{U W}$. (Radius \perp to a chord bisects the chord.)
9. $R T=2(S T), U W=2(V W)$ (Def. of seg. bisector)
10. $R T=U W$ (Substitution)
11. $\overline{R T} \cong \overline{U W}$ (Definition of \cong segments)
12. Given: $\odot O, \overline{M N} \cong \overline{P Q}$
$\overline{O N}$ and $\overline{O Q}$ are radii.
$\overline{O A} \perp \overline{M N} ; \overline{O B} \perp \overline{P Q}$
Prove: $\overline{O A} \cong \overline{O B}$
Proof:

Statements (Reasons)

1. $\odot O, \overline{M N} \cong \overline{P Q}, \overline{O N}$ and $\overline{O Q}$ are radii, $\overline{O A} \perp \overline{M N}$, $\overline{O B} \perp \overline{P Q}$ (Given)
2. $\overline{O A}$ bisects $\overline{M N} ; \overline{O B}$ bisects $\overline{P Q} \cdot(\overline{O A}$ and $\overline{O B}$ are contained in radii. A radius \perp to a chord bisects the chord.)
3. $A N=\frac{1}{2} M N ; B Q=\frac{1}{2} P Q$ (Def. of bisector)
4. $M N=P Q$ (Def. of \cong segments)
5. $\frac{1}{2} M N=\frac{1}{2} P Q$ (Mult. Prop.)
6. $A N=B Q$ (Substitution)
7. $\overline{A N} \cong \overline{B Q}$ (Def. of \cong segments)
8. $\overline{O N} \cong \overline{O Q}$ (All radii of a circle are \cong.)
9. $\triangle A O N \cong \triangle B O Q(H L)$
10. $\overline{O A} \cong \overline{O B}$ (CPCTC)

Pages 548-551 Lesson 10-4
35. Given: T lies inside $\angle P R Q$.
$\overline{R K}$ is a diameter of $\odot T$.
Prove: $m \angle P R Q=\frac{1}{2} m \widehat{P K Q}$

Proof:

Statements (Reasons)

1. $m \angle P R Q=m \angle P R K+m \angle K R Q$ (\angle Addition Th.)
2. $m \widehat{P K Q}=m \widehat{P K}+m \widehat{m Q}$ (Arc Addition Theorem)
3. $\frac{1}{2} m \widehat{P K Q}=\frac{1}{2} m \widehat{P K}+\frac{1}{2} m \widehat{K Q}$ (Multiplication Prop.)
4. $m \angle P R K=\frac{1}{2} m \widehat{P K}, m \angle K R Q=\frac{1}{2} m \widehat{K Q}$ (The
measure of an inscribed \angle whose side is a diameter is half the measure of the intercepted arc (Case 1).)
5. $\frac{1}{2} m \widehat{P K Q}=m \angle P R K+m \angle K R Q$ (Subst. (Steps 3, 4))
6. $\frac{1}{2} m \widehat{P K Q}=m \angle P R Q$ (Substitution (Steps 5, 1))
7. Given: T lies outside $\angle P R Q$.
$\overline{R K}$ is a diameter of $\odot T$.
Prove: $m \angle P R Q=\frac{1}{2} m \widehat{P Q}$

Proof:

Statements (Reasons)

1. $m \angle P R Q=m \angle K R Q-m \angle P R K$ (Angle Addition Theorem, Subtraction Property)
2. $m \widehat{P Q}=m \widehat{K Q}-m \widehat{K P}$ (Arc Addition Theorem, Subtraction Property)
3. $\frac{1}{2} m \widehat{P Q},=\frac{1}{2}(m \widehat{K Q}-m \widehat{K P})$ (Division Property)
4. $m \angle P R K=\frac{1}{2} m \overline{K P}, m \angle K R Q=\frac{1}{2} m \overline{K Q}$ (The measure of an inscribed \angle whose side is a diameter is half the measure of the intercepted arc (Case 1).)
5. $m \angle P R Q=\frac{1}{2} m \widehat{K Q}-\frac{1}{2} m \widehat{K P}$ (Subst. (Steps 1,4))
6. $m \angle P R Q=\frac{1}{2}(m \widehat{K Q}-m \widehat{K P})$ (Distributive Property)
7. $m \angle P R Q=\frac{1}{2} m \widehat{P Q}$ (Substitution (Steps 6, 3))
8. Given: inscribed $\angle M L N$ and $\angle C E D$ $\overline{C D} \cong \widehat{M N}$
Prove: $\angle C E D \cong \angle M L N$

Proof:

Statements (Reasons)

1. $\angle M L N$ and $\angle C E D$ are inscribed; $\overline{C D} \cong \widehat{M N}$ (Given)
2. $m \angle M L N=\frac{1}{2} m \widehat{M N} ; m \angle C E D=\frac{1}{2} m \widehat{C D}$ (Measure of an inscribed $\angle=$ half measure of intercepted arc.)
3. $m \overline{C D}=m \widehat{M N}$ (Def. of $\cong \operatorname{arcs}$)
4. $\frac{1}{2} m \widehat{C D}=\frac{1}{2} m \widehat{M N}$ (Mult. Prop.)
5. $m \angle C E D=m \angle M L N$ (Substitution)
6. $\angle C E D \cong \angle M L N$ (Def. of $\cong \angle s)$
7. Given: $\widehat{P Q R}$ is a semicircle. Prove: $\angle P Q R$ is a right angle. Proof: Since $\widehat{P Q R}$ is a semicircle, $\widehat{P S R}$ is also a semicircle and $m \widehat{P S R}=180 . \angle P Q R$ is an inscribed
 angle, and $m \angle P Q R=\frac{1}{2}(m \widehat{P S R})$ or 90 , making $\angle P Q R$ a right angle.
8. Given: quadrilateral $A B C D$ inscribed in $\odot O$
Prove: $\angle A$ and $\angle C$ are supplementary. $\angle B$ and $\angle D$ are supplementary.

Proof: By arc addition and the definitions of arc measure and the sum of central angles, $m \widehat{D C B}+m \widehat{D A B}=360$. Since $m \angle C=\frac{1}{2} m \widehat{D A B}$ and $m \angle A=\frac{1}{2} m \widehat{D C B}, m \angle C+m \angle A=\frac{1}{2}(m \overline{D C B}+m \widehat{D A B})$, but $m \widehat{D C B}+m \widehat{D A B}=360$, so $m \angle C+m \angle A=\frac{1}{2}(360)$ or 180 . This makes $\angle C$ and $\angle A$ supplementary. Because the sum of the measures of the interior angles of a quadrilateral is $360, m \angle A+m \angle C+m \angle B+$ $m \angle D=360$. But $m \angle A+m \angle C=180$, so $m \angle B+$ $m \angle D=180$, making them supplementary also.
41. Sides are congruent radii making it isosceles and $\angle A O C$ is a central angle for an arc of 90°, making it a right angle.
42. Each angle intercepts a semicircle, making them 90° angles. Each side is a chord of congruent arcs, so the chords are congruent.
43. Each angle intercepts a semicircle, making them 90° angles. Each side is a chord of congruent arcs, so the chords are congruent.

Pages 555-558, Lesson 10-5

27. Given: $\overline{A B}$ is tangent to $\odot X$ at B.
$\overline{A C}$ is tangent to $\odot X$ at C.
Prove: $\overline{A B} \cong \overline{A C}$
Proof:

Statements (Reasons)

1. $\overline{A B}$ is tangent to $\odot X$ at $B, \overline{A C}$ is tangent to $\odot X$ at C. (Given)
2. Draw $\overline{B X}, \overline{C X}$, and $\overline{A X}$. (Through any two points, there is one line.)
3. $\overline{A B} \perp \overline{B X}, \overline{A C} \perp \overline{C X}$ (Line tangent to a circle is \perp to the radius at the pt. of tangency.)
4. $\angle A B X$ and $\angle A C X$ are right angles. (Def. of \perp lines)
5. $\overline{B X} \cong \overline{C X}$ (All radii of a circle are \cong.)
6. $\overline{A X} \cong \overline{A X}$ (Reflexive Prop.)
7. $\triangle A B X \cong \triangle A C X(H L)$
8. $\overline{A B} \cong \overline{A C}$ (СРСТС)
9. 12; Draw $\overline{P G}, \overline{N L}$, and $\overline{P L}$. Construct $\overline{L Q} \perp \overline{G P}$, thus $L Q G N$ is a rectangle. $G Q=N L=4$, so $Q P=5$. Using the Pythagorean Theorem, $(Q P)^{2}+(Q L)^{2}=$
 $(P L)^{2}$. So, $Q L=12$. Since $G N=Q L, G N=12$.

Pages 571-574, Lesson 10-7
30. Given: $\overline{E C}$ and $\overline{E B}$ are secant segments.
Prove: $E A \cdot E C=$ $E D \cdot E B$
Proof:

Statements (Reasons)

1. $\overline{E C}$ and $\overline{E B}$ are secant segments. (Given)
2. $\angle D E C \cong \angle A E B$ (They name the same angle. (Reflexive Prop.))
3. $\angle E C D \cong \angle E B A$ (Inscribed $\angle s$ that intercept the same arc are \cong.)
4. $\triangle A B E \sim \triangle D C E$ (AA Similarity)
5. $\frac{E A}{E D}=\frac{E B}{E C}$ (Definition of similar triangles)
6. $E A \cdot E C=E D \cdot E B$ (Cross Products)
7. Given: tangent $\overline{R S}$ and secant $\overline{U S}$
Prove: $(R S)^{2}=U S \cdot T S$

Proof:

Statements (Reasons)

1. tangent $\overline{R S}$ and secant $\overline{U S}$ (Given)
2. $m \angle R U T=\frac{1}{2} m \widetilde{R T}$ (The measure of an inscribed angle equals half the measure of its intercepted arc.)
3. $m \angle S R T=\frac{1}{2} m \widehat{R T}$ (The measure of an angle formed by a secant and a tangent equals half the measure of its intercepted arc.)
4. $m \angle R U T=m \angle S R T$ (Substitution)
5. $\angle R U T \cong \angle S R T$ (Definition of congruent angles)
6. $\angle S \cong \angle S$ (Reflexive Prop.)
7. $\triangle S U R \sim \triangle S R T$ (AA Similarity)
8. $\frac{R S}{U S}=\frac{T S}{R S}$ (Definition of similar triangles)
9. $(R S)^{2}=$ US $\cdot T S$ (Cross Products)

Pages 577-580, Lesson 10-8

34. The slope of $\overline{A C}$ is $-\frac{1}{4}$, so the slope of its bisector is 4 . The midpoint of $\overline{A C}$ is $(0,5)$. Use the slope and the midpoint to write an equation for the bisector of $\overline{A C}$: $y=4 x+5$. The slope of $\overline{B C}$ is $-\frac{9}{2}$, so the slope of its bisector is $\frac{2}{9}$. The midpoint of $\overline{B C}$ is $(-2,-3)$. Use the slope and the midpoint to write an equation for the bisector of $\overline{B C}$: $y=\frac{2}{9} x-\frac{23}{9}$. Solving the system of equations, $y=4 x+5$ and $y=\frac{2}{9} x-\frac{23}{9}$, yields $(-2,-3)$, which is the circumcenter. Let $(-2,-3)$ be D, then $D A=D B=D C=\sqrt{85}$.

[^0]: *Key to Abbreviations: GCC = Graphing Calculator and Computer Masters
 SC = School-to-Career Masters

[^1]: Answers
 44. Use the properties of trapezoids and inscribed quadrilaterals to verify that $A B C D$ is isosceles.
 $m \angle A+m \angle D=180$ (same side interior angles $=180$)
 $m \angle A+m \angle C=180$ (opposite angles of inscribed quadrilaterals $=180$)
 $m \angle A+m \angle D=m \angle A+m \angle C$ (Substitution)
 $m \angle D=m \angle C$ (Subtraction Property)
 $\angle D \cong \angle C$ (Def. of $\cong \angle s)$
 Trapezoid $A B C D$ is isosceles because the base angles are congruent.

[^2]: Technology
 Interactive Chalkboard

