Right Triangles and Trigonometry

 Chapter Overview and PacingYear-long pacing: pages T20-T21.

	PACING (days)			
	Regular		Block	
	Basic/ Average	Advanced	Basic/ Average	Advanced
Geometric Mean (pp. 342-348) - Find the geometric mean between two numbers. - Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse.	1	1	0.5	0.5
The Pythagorean Theorem and Its Converse (pp. 349-356) Preview: Physically explore side-length relationships in the Pythagorean Theorem. - Use the Pythagorean Theorem. - Use the converse of the Pythagorean Theorem.	2 (with 7-2 Preview)	1	1 (with 7-2 Preview)	0.5
Special Right Triangles (pp. 357-363) - Use properties of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles. - Use properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.	2	2	1	1
Trigonometry (pp. 364-370) - Find trigonometric ratios using right triangles. - Solve problems using trigonometric ratios.	2	2	1	1
Angle of Elevation and Depression (pp. 371-376) - Solve problems involving angles of elevation. - Solve problems involving angles of depression.	1	2	0.5	1
The Law of Sines (pp. 377-384) - Use the Law of Sines to solve triangles. - Solve problems by using the Law of Sines. Follow-Up: Use geometry software to investigate the Law of Sines.	optional	$\begin{aligned} & \hline 2 \text { (with 7-6 } \\ & \text { Follow-Up) } \end{aligned}$	optional	1 (with 7-6 Follow-Up)
The Law of Cosines (pp. 385-391) - Use the Law of Cosines to solve triangles. - Solve problems by using the Law of Cosines. Follow-Up: Use trigonometric ratios to identify trigonometric identities.	optional	2	optional	1
Study Guide and Practice Test (pp. 392-397) Standardized Test Practice (pp. 398-399)	1	1	0.5	0.5
Chapter Assessment	1	1	0.5	0.5
TOTAL	10	14	5	7

An electronic version of this chapter is available on StudentWorks ${ }^{T M}$. This backpack solution CD-ROM allows students instant access to the Student Edition, lesson worksheet pages, and web resources.

Timesaving Tools

 - TeacherWorks
Chapter Resource Manager

All-In-One Planner and Resource Center
See pages T 5 and T 21 .

[^0]
Continuity of Instruction

Prior Knowledge

In previous courses, students evaluated radical expressions and equations involving fractions. The Pythagorean Theorem is reviewed in Chapter 1. In Chapter 6, students solve proportions. Chapter 4 introduces students to the Angle Sum Theorem.

This Chapter

This chapter provides students with an introduction to trigonometry. Students learn how to use the geometric mean to solve problems involving side length. They solve problems using the Pythagorean Theorem and its converse. Trigonometric ratios are defined and then used to solve right triangle problems. Students also use the Law of Sines and the Law of Cosines to solve non-right triangles.

Future Connections

Students gain a basic knowledge of trigonometric ratios from this chapter. This knowledge will help them in higher-level math courses, including pre-calculus and calculus. Architects, surveyors, and civil engineers use trigonometric ratios in their work.

7-1 Geometric Mean

The geometric mean between two numbers is the square root of their product. For two positive numbers a and b, the geometric mean is the positive number x for which the proportion $a: x=x: b$ is true. This proportion is equivalent to $x=\sqrt{a b}$.

The geometric mean has a particular application to a right triangle. If an altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the two triangles formed are similar to the given triangle and to each other. The measure of this altitude is the geometric mean between the measures of the two segments of the hypotenuse. Moreover, the measure of a leg of the triangle is the geometric mean between the measures of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

7-2 The Pythagorean Theorem and Its Converse

The Pythagorean Theorem states that in a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse. The converse of the Pythagorean Theorem is useful in determining whether given measures are those of a right triangle. If the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle. A Pythagorean triple is a group of three whole numbers that satisfy the equation $a^{2}+b^{2}=c^{2}$, where c is the greatest number.

7-3) Special Right Triangles

A $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is the only type of isosceles right triangle. One of its special properties is that the hypotenuse is $\sqrt{2}$ times as long as a leg, so the ratio of the sides is 1:1: $\sqrt{2}$. A $30^{\circ}-60^{\circ}-90^{\circ}$ triangle also has special properties. The measures of the sides are $x, x \sqrt{3}$, and $2 x$, giving the sides a ratio of $1: \sqrt{3}: 2$. Knowing these properties can save you valuable time when you are solving problems involving special right triangles.

7-4 Trigonometry

A ratio of the lengths of the sides of a right triangle is called a trigonometric ratio. The three most common trigonometric ratios are sine, cosine, and tangent, abbreviated sin, cos, and \tan. Sine of $\angle A$ is the measure of the leg opposite $\angle A$ divided by the measure of the hypotenuse. Cosine of $\angle A$ is the measure of the leg adjacent $\angle A$ divided by the measure of the hypotenuse. Tangent of $\angle A$ is the measure of the leg opposite the angle divided by the measure of the leg adjacent the angle. The value of this ratio does not depend on the size of the triangle or the measures of the sides.

Trigonometric ratios are used to find missing measures of a right triangle. You only need to know the measures of two sides or the measure of one side and one acute angle. The inverse of each trigonometric ratio yields the angle measure. The inverses are written $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$.

Angle of Elevation and Depression

An angle of elevation is the angle between the line of sight and the horizontal when an observer looks upward. An angle of depression is the angle between the line of sight and the horizontal when an observer looks downward. Trigonometric ratios can be used to solve problems involving angles of elevation and depression. Angles of elevation and depression to two different objects can be used to find the difference between those objects.

The Law of Sines

In trigonometry, the Law of Sines can be used to find missing measures of triangles that are not right triangles. Let $\triangle A B C$ be any triangle with a, b, and c representing the measures of the sides opposite the angles with measures A, B, and C, respectively. Then $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$. The Law of Sines can be used to solve a triangle. This means finding the measure of every side and angle. The Law of Sines can be used to solve a triangle if you know the measures of two angles and any side of a triangle, or if you know the measures of two sides and an angle opposite one of these sides of the triangle.

There is one case in which using the Law of Sines to solve a triangle will yield an ambiguous solution. If you know the measures of two sides and an angle opposite one of the sides (SSA) and the angle is acute, it is possible to find two different triangles. One triangle will be an acute triangle, and the other will be obtuse.

7-7 The Law of Cosines

The Law of Cosines allows you to solve a triangle in some situations when the Law of Sines cannot be used. This occurs when you know the measures of two sides and the included angle (SAS) or three sides (SSS). Let $\triangle A B C$ be any triangle with a, b, and c representing the measures of sides opposite angles with measures A, B, and C, respectively. Then the following equations are true:
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

	Type	Student Edition	Teacher Resources	Technology/Internet
	Ongoing	$\begin{aligned} & \text { Prerequisite Skills, pp. 341, 348, } \\ & \text { 356, 363, 370, } 376,383 \\ & \text { Practice Quiz 1, p. } 363 \\ & \text { Practice Quiz 2, p. } 383 \end{aligned}$	5-Minute Check Transparencies Prerequisite Skills Workbook, pp. 11-12, 17-18, $21-22,25-26,31-32$ Quizzes, CRM pp. 407-408 Mid-Chapter Test, CRM p. 409 Study Guide and Intervention, CRM pp. 351-352, $\begin{aligned} & 357-358,363-364,369-370,375-376, \\ & 381-382,387-388 \end{aligned}$	GeomPASS: Tutorial Plus, Lessons $13,14,15$, and 16 www.geometryonline.com/ self_check_quiz www.geometryonline.com/ extra_examples
	Mixed Review	$\begin{aligned} & \text { pp. } 348,356,363,370,376, \\ & 383,390 \end{aligned}$	Cumulative Review, CRM p. 410	
	Error Analysis	Find the Error, pp. 348, 353, 380 Common Misconceptions, p. 372	Find the Error, TWE pp. 345, 353, 380 Unlocking Misconceptions, TWE p. 359 Tips for New Teachers, TWE p. 358	
	Standardized Test Practice	```pp. 348, 356, 362, 370, 372, 373, 376, 382, 390, 392, 398, 399```	TWE pp. 398-399 Standardized Test Practice, CRM pp. 411-412	Standardized Test Practice CD-ROM www.geometryonline.com/ standardized_test
	Open-Ended Assessment	Writing in Math, pp. 348, 356, 362, 369, 376, 382, 389 Open Ended, pp. 345, 353, 360, 367, 373, 380, 387 Standardized Test, p. 399	Modeling: TWE pp. 356, 376 Speaking: TWE pp. 363, 370 Writing: TWE pp. 348, 383, 390 Open-Ended Assessment, CRM p. 405	
z 0 n 4 n 4 4	Chapter Assessment	Study Guide, pp. 392-396 Practice Test, p. 397	Multiple-Choice Tests (Forms 1, 2A, 2B), CRM pp. 393-398 Free-Response Tests (Forms 2C, 2D, 3), CRM pp. 399-404 Vocabulary Test/Review, CRM p. 406	ExamView ${ }^{\otimes}$ Pro (see below) MindJogger Videoquizzes www.geometryonline.com/ vocabulary_review www.geometryonline.com/ chapter_test

Geometry Lesson	Yearly ProgressPro Skill Lesson
$7-1$	Geometric Mean
$7-2$	The Pythagorean Theorem and Its Converse
$7-3$	Special Right Triangles
$7-4$	Trigonometry
$7-5$	Angles of Elevation and Depression
$7-6$	The Laws of Sines
$7-7$	The Law of Cosines

ExamView ${ }^{\otimes}$ Pro

Use the networkable ExamView ${ }^{\otimes}$ Pro to:

- Create multiple versions of tests.
- Create modified tests for Inclusion students.
- Edit existing questions and add your own questions.
- Use built-in state curriculum correlations to create tests aligned with state standards.
- Apply art to your test from a program bank of artwork.

For more information on Intervention and Assessment, see pp. T8-T11.
340E Chapter 7 Right Triangles and Trigonometry

Reading and Writing in Mathematics

Glencoe Geometry provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 341
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 345, 353, 360, 367, 373, 380, 387)
- Writing in Math questions in every lesson, pp. 348, 356, 362, 369, 376, 382, 389
- Reading Study Tip, p. 364
- WebQuest, pp. 346, 390

Teacher Wraparound Edition

- Foldables Study Organizer, pp. 341, 392
- Study Notebook suggestions, pp. 345, 349, 353, 360, 367, 373, 380, 388
- Modeling activities, pp. 356, 376
- Speaking activities, pp. 363, 370
- Writing activities, pp. 348, 383, 390
- Differentiated Instruction (Verbal/Linguistic), p. 386
- ELL Resources, pp. 340, 346, 354, 361, 368, 374, 381, 386, 389, 392

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 7 Resource Masters, pp. vii-viii)
- Proof Builder helps students learn and understand theorems and postulates from the chapter. (Chapter 7 Resource Masters, pp. ix-x)
- Reading to Learn Mathematics master for each lesson (Chapter 7 Resource Masters, pp. 355, 361, 367, 373, 379, 385, 391)
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading Strategies for the Mathematics Classroom
- WebQuest and Project Resources

For more information on Reading and Writing in Mathematics, see pp. T6-T7.

PROJECT

CRISS Study Skill

A Venn diagram can help students understand the commonalities and differences in two or more concepts. Show students the example below that compares and contrasts the Law of Sines and the Law of Cosines. While studying Chapter 7, have students work in groups to make Venn diagrams for special right triangles (Lesson 7-3) and for angles of elevation and depression (Lesson 7-5).

7 Notes

What You'll Learn

Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

Lesson	NCTM Standards	Local Objectives			
$7-1$	$1,3,6,8,9,10$				
$7-2$ Preview	3,6				
$7-2$	$3,6,8,9,10$				
$7-3$	$3,6,8,9,10$				
$7-4$	$3,6,8,9,10$				
$7-5$	$3,6,8,9,10$				
$7-6$	$3,6,8,9,10$				
$7-6$	3,6				
Follow-Up			$\quad 3$	$7-7$	$3,6,8,9,10$
:---:	:---				

Key to NCTM Standards:

1=Number \& Operations, 2=Algebra,
3=Geometry, 4=Measurement,
5=Data Analysis \& Probability, 6=Problem Solving, 7=Reasoning \& Proof, 8=Communication, 9=Connections, 10=Representation

Right Triangles and Trigonometry

Vocabulary Builder

The Key Vocabulary list introduces students to some of the main vocabulary terms included in this chapter. For a more thorough vocabulary list with pronunciations of new words, give students the Vocabulary Builder worksheets found on pages vii and viii of the Chapter 7 Resource Masters. Encourage them to complete the definition of each term as they progress through the chapter. You may suggest that they add these sheets to their study notebooks for future reference when studying for the Chapter 7 test.

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 7.

For Lesson 7-1

Solve each proportion. Round to the nearest hundredth, if necessary. (For review, see Lesson 6 -1.)

1. $\frac{3}{4}=\frac{12}{a} 16$
2. $\frac{c}{5}=\frac{8}{3} 13.33$
3. $\frac{e}{20}=\frac{6}{5}=\frac{f}{10}$
4. $\frac{4}{3}=\frac{6}{y}=\frac{1}{z}$
$e=24, f=12$
$y=4.5, z=0.75$
Pythagorean Theorem
For Lesson 7-2

Find the measure of the hypotenuse of each right triangle having legs with the given measures. Round to the nearest hundredth, if necessary. (For review, see Lesson 1-3.)
5. 5 and 1213
6. 6 and 810
7. 15 and 1521.21
8. 14 and 2730.41

For Lessons 7-3 and 7-4

Radical Expressions
Simplify each expression. (For review, see pages 744 and 745.$)$
9. $\sqrt{8} 2 \sqrt{2}$
10. $\sqrt{10^{2}-5^{2}} 5 \sqrt{3}$
11. $\sqrt{39^{2}-36^{2}}$
15
12. $\frac{7}{\sqrt{2}} \frac{7 \sqrt{2}}{2}$

For Lessons 7-5 through 7-7
Angle Sum Theorem
Find x. (For review, see Lesson 4-2.)
13.

4. -115
115
15. 23

FOLDABLES

Study Organizer
Right Triangles and Trigonometry Make this Foldable to help you organize your notes. Begin with seven sheets of grid paper.

Step 1
 Fold

Fold each sheet along the diagonal from the corner of one end to 2.5 inches away from the corner of the other end.
 Step 2 Stack

Stack the sheets, and fold the rectangular part in half.

Step 3 Staple
Staple the sheets in three
places.

Step 4 Label

Label each sheet with a lesson number, and the rectangular part with the chapter title.

Reading and Writing As you read and study the chapter, write notes, define terms, and solve problems in your Foldable.

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 7. Page references are included for additional student help.
Additional review is provided in the Prerequisite Skills Workbook, pages 11-12, 17-18, 21-22, 25-26, 31-32.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Skill
$7-2$	Using the Pythagorean Theorem, p. 348
$7-3$	Simplifying Radical Expressions, p. 356
$7-4$	Solving Equations That Involve Fractions, p. 363
$7-5$	Angles Formed by Parallel Lines and a Transversal, p. 370
$7-6$	Solving Proportions, p. 376
$7-7$	Evaluating Expressions, p. 383

FOLDABLES

 Study Organizer
For more information

 about Foldables, see Teaching Mathematics with Foldables.Journals and Visuals Use this Foldable journal for writing about right triangles and trigonometry. After students make their triangle-shaped journal, have them label the front of each triangle to correspond to the seven lessons in this chapter. Under the tabs of their Foldable, students take notes, define terms, solve problems, and write examples of how laws are used. On the front of each section, ask students to design a visual (graph, diagram, picture, chart) that presents the information introduced in the lesson in a concise, easy-to-study format. Encourage students to label their visuals and write captions.

7-1 Geometric Mean

1 Focus

5-Minute Check
Transparency 7-1 Use as a quiz or review of Chapter 6.

Mathematical Background notes

 are available for this lesson on p. 340C.
How
 can the geometric mean be used to view

 paintings?Ask students:

- What happens if you view the painting at a distance that is less than the geometric mean of the two distances described above? You are too close to the painting and cannot see all of it at once. Your eyes must move left, right, up, and down to see all the details of the painting.
- Name some other scenarios where you would be best positioned at a geometric mean to view something. watching a program on television or a movie in a theatre, viewing a sports event, seeing a production on a stage, using a computer, skimming a book or magazine, etc.

Vocabulary
geometric mean

Study Tip

Means and
Extremes
In the equation $x^{2}=a b$, the two x^{\prime} s in x^{2} represent the means, and a and b represent the extremes of the proportion.

What Youll Learn

- Find the geometric mean between two numbers.
- Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse.

How can the geometric mean be
used to view paintings?
When you look at a painting, you should stand at a distance that allows you to see all of the details in the painting. The distance that creates the best view is the geometric mean of the distance from the top of the painting to eye level and the distance from the bottom of the painting to eye level.

GEOMETRIC MEAN The geometric mean between two numbers is the positive square root of their product.

Key Concept

Geometric Mean
For two positive numbers a and b, the geometric mean is the positive number x where the proportion $a: x=x: b$ is true. This proportion can be written using fractions as $\frac{a}{x}=\frac{x}{b}$ or with cross products as $x^{2}=a b$ or $x=\sqrt{a b}$.

Example 1 Geometric Mean

Find the geometric mean between each pair of numbers.
a. 4 and 9

Let x represent the geometric mean.
$\frac{4}{x}=\frac{x}{9} \quad$ Definition of geometric mean
$x^{2}=36 \quad$ Cross products
$x=\sqrt{36}$ Take the positive square root of each side.
$x=6 \quad$ Simplify.
b. 6 and 15
$\frac{6}{x}=\frac{x}{15} \quad$ Definition of geometric mean
$x^{2}=90 \quad$ Cross products
$x=\sqrt{90}$ Take the positive square root of each side.
$x=3 \sqrt{10}$ Simplify.
$x \approx 9.5 \quad$ Use a calculator.

342 Chapter 7 Right Triangles and Trigonometry
Robert Brenner/PhotoEdit

Resource Manager

Workbook and Reproducible Masters

Chapter 7 Resource Masters

- Study Guide and Intervention, pp. 351-352

Prerequisite Skills Workbook, pp. 11-12, 31-32

- Skills Practice, p. 353
- Practice, p. 354
- Reading to Learn Mathematics, p. 355
- Enrichment, p. 356

Transparencies

5-Minute Check Transparency 7-1
Answer Key Transparencies

- Technology

Interactive Chalkboard

ALTITUDE OF A TRIANGLE Consider right triangle $X Y Z$ with altitude $\overline{W Z}$ drawn from the right angle Z to the hypotenuse $\overline{X Y}$. A special relationship exists for the three right triangles, $\triangle X Y Z, \triangle X Z W$, and $\triangle Z Y W$.

Geometry Software Investigation

Right Triangles Formed by the Altitude
Use The Geometer's Sketchpad to draw a right triangle $X Y Z$ with right angle Z. Draw the altitude $\overline{Z W}$ from the right angle to the hypotenuse. Explore the relationships among the three right triangles formed.

Think and Discuss

1. Find the measures of $\angle X, \angle X Z Y, \angle Y, \angle X W Z, \angle X Z W$, $\angle Y W Z$, and $\angle Y Z W$. See students' work.
2. What is the relationship between the measures of $\angle X$ and $\angle Y Z W$? What is the relationship between the measures of $\angle Y$ and $\angle X Z W$? They are equal.
3. Drag point Z to another position. Describe the relationship between the measures of $\angle X$ and $\angle Y Z W$ and between the measures of $\angle Y$ and $\angle X Z W$. They are equal.
4. Make a conjecture about $\triangle X Y Z, \triangle X Z W$, and $\triangle Z Y W$. They are similar.

Study Tip

Altitudes of a Right Triangle The altitude drawn to the hypotenuse originates from the right angle. The other two altitudes of a right triangle are the legs.

The results of the Geometry Software Investigation suggest the following theorem.

Theorem 7.1

If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the two triangles formed are similar to the given triangle and to each other.

Example: $\triangle X Y Z \sim \triangle X W Y \sim \triangle Y W Z$

You will prove this theorem in Exercise 45.
By Theorem 7.1, since $\triangle X W Y \sim \triangle Y W Z$, the corresponding sides are proportional. Thus, $\frac{X W}{Y W}=\frac{Y W}{Z W}$. Notice that $\overline{X W}$ and $\overline{Z W}$ are segments of the hypotenuse of the largest triangle.

Theorem 7.2

The measure of an altitude drawn from the vertex of the right angle of a right triangle to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse.

Example: $Y W$ is the geometric mean of $X W$ and $Z W$.

You will prove this theorem in Exercise 46.

Geometry Software Investigation

Students should recognize that if they were given just one angle measure other than the right angle, they would have enough information to find all the other angles represented in the figure. They should also see that given one segment length, they could use proportions to find any of the other segment lengths in the figure as well.

2 Teach

GEOMETRIC MEAN

In-Class Example

Power
 Point ${ }^{\circledR}$

1 Find the geometric mean between each pair of numbers.
a. 2 and 5010
b. 25 and $7 \approx 13.2$

ALTITUDE OF A TRIANGLE

In-Class Example

Power
 Point ${ }^{\ominus}$

Teaching Tip Remind students that they automatically discard the negative root when finding the altitude or geometric mean because these values represent lengths, and lengths cannot be negative.
In $\triangle A B C, B D=6$ and $A D=27$. Find $C D$.

$C D \approx 12.7$

Interactive

Chalkboard
PowerPoint ${ }^{\circledR}$
Presentations
This CD-ROM is a customizable Microsoft ${ }^{R}$ PowerPoint ${ }^{\circledR}$ presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Try These exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

3 KITES Ms. Alspach is constructing a kite for her son. She has to arrange perpendicularly two support rods, the shorter of which is 27 inches long. If she has to place the short rod 7.25 inches from one end of the long rod in order to form two right triangles with the kite fabric, what is the length of the long rod?

4 Find c and d in $\triangle J K L$.

$c=20 ; d \approx 11.2$

Study Tip
Square Roots Since these numbers represent measures, you can ignore the negative square root value.

Example 2 Altitude and Segments of the Hypotenuse
In $\triangle P Q R, R S=3$ and $Q S=14$. Find $P S$.
Let $x=P S$.
$\frac{R S}{P S}=\frac{P S}{Q S}$

$\frac{3}{x}=\frac{x}{14} \quad R S=3, Q S=14$, and $P S=x$
$x^{2}=42 \quad$ Cross products
$x=\sqrt{42}$ Take the positive square root of each side.
$x \approx 6.5$ Use a calculator.
$P S$ is about 6.5.

Ratios in right triangles can be used to solve problems.

Example 3 Altitude and Length of the Hypotenuse

ARCHITECTURE Mr. Martinez is designing a walkway that must pass over an elevated train. To find the height of the elevated train, he holds a carpenter's square at eye level and sights along the edges from the street to the top of the train. If Mr. Martinez's eye level is 5.5 feet above the street and he is 8.75 feet from the train, find the distance from the street to the top of the train. Round to the nearest tenth.

Draw a diagram. Let $\overline{Y X}$ be the altitude drawn from the right angle of $\triangle W Y Z$.

$$
\begin{aligned}
\frac{W X}{Y X} & =\frac{Y X}{Z X} & & \\
\frac{5.5}{8.75} & =\frac{8.75}{Z X} & & W X=5.5 \text { and } Y X=8.75 \\
5.5 Z X & =76.5625 & & \text { Cross products } \\
Z X & \approx 13.9 & & \text { Divide each side by } 5.5 .
\end{aligned}
$$

Mr. Martinez estimates that the elevated train is $5.5+13.9$ or about 19.4 feet high.

The altitude to the hypotenuse of a right triangle determines another relationship between the segments.

Theorem 7.3

If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the measure of a leg of the triangle is the geometric mean between the measures of the hypotenuse and the segment of the hypotenuse
 adjacent to that leg.

Example: $\frac{X Z}{X Y}=\frac{X Y}{X W}$ and $\frac{X Z}{Y Z}=\frac{Z Y}{W Z}$

You will prove Theorem 7.3 in Exercise 47.

Differentiated Instruction

Intrapersonal Allow students to sit quietly and explore similarities and differences between Theorem 7.2 and Theorem 7.3. Encourage students to use the examples in the book or create their own to reinforce the concepts outlined in these two theorems. Ask students to think and write about why the formulas for geometric mean work for a right triangle with an altitude drawn to its hypotenuse.

Study Tip

Simplifying
Radicals
Remember that $\sqrt{12}=$
$\sqrt{4} \cdot \sqrt{3}$. Since $\sqrt{4}=$
$2, \sqrt{12}=2 \sqrt{3}$.
For more practice simplifying radicals, see pages 744 and 745 .

Find x and y in $\triangle P Q R$.
$\overline{P Q}$ and $\overline{R Q}$ are legs of right triangle $P Q R$. Use Theorem 7.3 to write a proportion for each leg and then solve.

Check for Understanding

Concept Check 1. OPEN ENDED Find two numbers whose geometric mean is 12.

1. Sample answer:

2 and 72
3. Ian; his proportion shows that the altitude is the geometric mean of the two segments of the hypotenuse.

$$
\begin{aligned}
\frac{P R}{P Q} & =\frac{P Q}{P S} & & \\
\frac{6}{y} & =\frac{y}{2} & & P S=2, P Q=y, P R=6 \\
y^{2} & =12 & & \text { Cross products } \\
y & =\sqrt{12} & & \text { Take the square root. } \\
y & =2 \sqrt{3} & & \text { Simplify. } \\
y & \approx 3.5 & & \text { Use a calculator. }
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{P R}{R Q} & =\frac{R Q}{S R} \\
\frac{6}{x} & =\frac{x}{4} & & R S=4, R Q=x, P R=6 \\
x^{2} & =24 & & \text { Cross products } \\
x & =\sqrt{24} & & \text { Take the square root. } \\
x & =2 \sqrt{6} & & \text { Simplify. } \\
x & \approx 4.9 & & \text { Use a calculator. }
\end{array}
$$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 7.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION FIND THE ERROR

Ask students to name the hypotenuse of $\triangle R S T$, and point out that Ian correctly found the geometric mean between the two segments of the hypotenuse, as the rule states in Theorem 7.2.

About the Exercises... Organization by Objective
 - Geometric Mean: 13-20
 - Altitude of a Triangle: 21-32

Odd/Even Assignments

Exercises 13-32 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercise 40 requires the Internet or other research materials.

Assignment Guide

Basic: 13-31 odd, 35-43 odd, 44, 48-66
Average: 13-43 odd, 44, 48-66
Advanced: 14-44 even, 45-63
(optional: 64-66)

Answer

2. For leg $\overline{C B}, \overline{D B}$ is the segment of the hypotenuse that shares an endpoint. Thus, it is the adjacent segment. The same is true for leg $\overline{A C}$ and segment $\overline{A D}$.

Study Guide and Intervention,
p. 351 (shown) and p. 352

Exercises

Find the geometric mean between eact

1. 4 and 44
2. 4 and $6 \sqrt{24} \approx 4.9$
3.6 and $9 \sqrt{54} \approx 7.3$
3. $\frac{1}{2}$ and 21
4. $2 \sqrt{3}$ and $3 \sqrt{3} \sqrt{18} \approx 4.2$
5. 4 and 2510
6. $\sqrt{3}$ and $\sqrt{6} 18^{\frac{1}{4}} \approx 2.1$
7. 10 and $100 \sqrt{1000} \approx 31.6$
8. $\frac{1}{2}$ and $\frac{1}{4} \sqrt{\frac{1}{8}} \approx 0.4$
9. $\frac{2 \sqrt{2}}{5}$ and $\frac{3 \sqrt{2}}{5} \sqrt{\frac{12}{25}} \approx 0.7$
11.4 and $168 \quad 12.3$ and $24 \sqrt{72} \approx 8.5$

The geometric mean and one extreme are given. Find the other extreme
13. $\sqrt{24}$ is the geometric mean between a and b. Find b if $a=2$. 12
14. $\sqrt{12}$ is the geometric mean between a and b. Find b if $a=3$. 4

Determine whether each statement is alvays, sometimes, or never true
15. The geometric mean of two positive numbers is greater than the average of the two
numbers. never
16. If the geometric mean of two po
are less than 1. sometimes

10. CIVIL ENGINEERING An airport, a factory, and a shopping center are at the vertices of a
 distances from the eshopping center are 3.6 miles and 4.8 miles, respectively. A service road
will be constructed from the shopping center to the highway that ocnects the airport and ill be constructed from the shoping center to the highway that connects the airport ant
factory. What is the shortest possible length for the service road? Round to the nearest undredth. 2.88 mi

Reading to Learn ELL
Mathematics, p. 355
Pre-Activity How can the geometric mean be used to view paintings? Read the introduction to Lesson $7-1$ at the top of page 342 in you What is a disadvantage of standing to close to a painting?
Sample answer: You don't get a good overall view. What is a disadvantage of standing too far from a painting?
Sample answer: You can't see all the details in the painting.
Reading the Lesson

1. In the past, when you have seen the word mean
average or arithmetic mean of the two numbers.
a. Complete the following by writing an algetraic

If a and b are two positive numbers, then the geonestric $\sqrt{a b}$ and their arithmetic mean is $\frac{a+b}{2}$
Explain in words, without using any mathematical symbols, the difference between the geometric mean and the algebraic mean. Sample answer: The geometric
mean between two numbers is the square root of their product. The arithmetic mean of two numbers is half their sum.
2. Let r and s be two positive numbers. In which of the following equations is z equal to the
$\begin{array}{llllll}\text { A. } \frac{s}{z}=\frac{z}{r} & \text { B. } \frac{r}{z}=\frac{s}{z} & \text { C. } s: z=z: r & \text { D. } \frac{r}{z}=\frac{z}{s} & \text { E. } \frac{z}{r}=\frac{z}{s} & \text { F. } \frac{z}{s}=\frac{r}{z}\end{array}$
. Supply the missing words or phrases to complete the statement of each theorem. to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse
b. If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the measure of a $\frac{\mathrm{leg}}{\text { is }}$ of the triangle
is the geometric mean between the measure of the hypotenuse and the segment of the hypotenuse adjacent to that leg. of the hypotenuse and the segment If the altitude is drawn from the vertex to verter triangle to its hypotenuse then the two tria the right angle of a right similar to the given triangle and to each other.
Helping You Remember
4. A good way to remember a new mathematical concept is to relate it to something you
already kyow. How wan the meaning of mean in a proportion help you to remember how
 geometric mean between the two extremes.

Find x and y.

10. $x=2 \sqrt{6}$;
$y=\sqrt{33}$
11. $x=6 ; y=4 \sqrt{3}$

Application 12. DANCES Khaliah is making a banner for the
Application 12. DANCES Khaliah is making a banner for the dance committee. The banner is to be as high as the wall of the gymnasium. To find the height of the wall, Khaliah held a book up to her eyes so that the top and bottom of the wall were in line with the top edge and binding of the cover. If Khaliah's eye level is 5 feet off the ground and she is standing 12 feet from the wall, how high is the wall? 33.8 ft

Practice and Apply

Find the measure of the altitude drawn to the hypotenuse.
21. B

22. $F \quad 12$

23.

24.

25.

$\sqrt{26} \approx 5.1$
26.

Find x, y, and $z .27-32$. See margin.
27.

28.

29.

30.

31.

32.

346 Chapter 7 Right Triangles and Trigonometry

Enrichment, p. 356

Mathematics and Music

346 Chapter 7 Right Triangles and Trigonometry
40. Sample answer:

The golden ratio occurs when the geometric mean is approximately 1.62.
(Wemuest)
You can use geometric mean and the Quadratic Formula to discover the golden mean. Visit www.geometry online.com/webquest to continue work on your WebQuest project.

The geometric mean and one extreme are given. Find the other extreme.
33. $\sqrt{17}$ is the geometric mean between a and b. Find b if $a=7 . \frac{17}{7}$
\star 34. $\sqrt{12}$ is the geometric mean between x and y. Find x if $y=\sqrt{3} .4 \sqrt{3} \approx 6.9$
Determine whether each statement is always, sometimes, or never true.
35. The geometric mean for consecutive positive integers is the average of the two numbers. never
36. The geometric mean for two perfect squares is a positive integer. always
37. The geometric mean for two positive integers is another integer. sometimes
38. The measure of the altitude of a triangle is the geometric mean between the measures of the segments of the side it intersects. sometimes
39. BIOLOGY The shape of the shell of a chambered nautilus can be modeled by a geometric mean. Consider the sequence of segments $\overline{O A}, \overline{O B}, \overline{O C}, \overline{O D}, \overline{O E}, \overline{O F}$, $\overline{O G}, \overline{O H}, \overline{O I}$, and $\overline{O J}$. The length of each of these segments is the geometric mean between the lengths of the preceding segment and the succeeding segment. Explain this relationship. (Hint: Consider $\triangle F G H$.) See margin.

40. RESEARCH Refer to the information at the left. Use the Internet or other resource to write a brief description of the golden ratio.
41. CONSTRUCTION In the United States, most building codes limit the steepness of the slope of a roof to $\frac{4}{3}$, as shown at the right. A builder wants to put a support brace from point C perpendicular to $\overline{A P}$. Find the length of the brace. 2.4 yd

SOCCER For Exercises 42 and 43, refer to the graphic.
42. Find the geometric mean between the number of players from Indiana and North Carolina. $\sqrt{70} \approx 8.4$
43. Are there two schools whose geometric mean is the same as the geometric mean between UCLA and Clemson? If so, which schools? yes; Indiana and Virginia
44. CRITICAL THINKING Find the exact value of $D E$, given $A D=12$ and $B D=4.2 \sqrt{3}$

www.geometryonline.com/self_check_quiz

Answers

39. $\triangle F G H$ is a right triangle. $\overline{O G}$ is the altitude from the vertex of the right angle to the hypotenuse of that triangle. So, by Theorem 7.2, $O G$ is the geometric mean between OF and OH , and so on.

Answers (p. 346)
27. $x=2 \sqrt{22} \approx 9.4 ; y=\sqrt{33} \approx 5.7 ; z=2 \sqrt{6} \approx 4.9$
28. $x=\frac{50}{3} ; y=10 ; z=\frac{40}{3}$
29. $x=\frac{40}{3} ; y=\frac{5}{3} ; z=10 \sqrt{2} \approx 14.1$
30. $x=2 \sqrt{21} \approx 9.2 ; y=21 ; z=25$
31. $x=6 \sqrt{6} \approx 14.7 ; y=6 \sqrt{42} \approx 38.9 ; z=36 \sqrt{7} \approx 95.2$
32. $x=4 \sqrt{6} \approx 9.8 ; y=4 \sqrt{2} \approx 5.7 ; z=4 \sqrt{3} \approx 6.9$

4 Assess

Open-Ended Assessment

Writing Draw and label several figures on the board, and ask students to write down the correct geometric mean proportions without working out the problem. Then have volunteers come to the board and write appropriate proportions that correspond with the figures, and allow seated students to check their work.

Getting Ready for
 Lesson 7-2

Prerequisite Skill Students will review the Pythagorean Theorem and learn about its converse in Lesson 7-2. Use Exercises 64-66 to determine your students' familiarity with using the Pythagorean Theorem.

Answers

48. Sample answer: The geometric mean can be used to help determine the optimum viewing distance. Answers should include the following.

- If you are too far from a painting, you may not be able to see fine details. If you are too close, you may not be able to see the entire painting.
- A curator can use the geometric mean to help determine how far from the painting the roping should be.

PROOF Write the specified type proof for each theorem. 45-47. See p. 399A.
45. two-column proof of Theorem 7.1
48.

Answer the question that was posed at the beginning of the lesson. See margin.
How can the geometric mean be used to view paintings?
Include the following in your answer:

- an explanation of what happens when you are too far or too close to a painting, and
- an explanation of how the curator of a museum would determine where to place roping in front of paintings on display.

Standardized Test Practice
(A) (B) CD
49. Find x and y. C
(A) 4 and 6
(B) 2.5 and 7.5
(C) 3.6 and 6.4
(D) 3 and 7
50. ALGEBRA Solve $5 x^{2}+405=1125$. B
(A) ± 15
(B) ± 12
(C) $\pm 4 \sqrt{3}$
(D) ± 4

Maintain Your Skills

Mixed Review
51. 15, 18, 21
52. 14, 44, 134
51. $x+3$, where x initially equals 12
53. $x^{2}-2$, where x initially equals 3 7, 47, 2207
-4, -14, -34
55. The measures of the sides of a triangle are 20,24 , and 30 . Find the measures of the segments formed where the bisector of the smallest angle meets the opposite side. (Lesson $6-5$) $8 \frac{8}{9}, 11 \frac{1}{9}$
Use the Exterior Angle Inequality Theorem to list all angles that satisfy the stated condition. (Lesson 5-2)
56. all angles with a measure less than $m \angle 8 \angle 6, \angle 4, \angle 2, \angle 3$
57. all angles with a measure greater than $m \angle 1 \angle 5, \angle 7$
58. all angles with a measure less than $m \angle 7 \angle 1, \angle 6$
59. all angles with a measure greater than $m \angle 6 \angle 2, \angle 7, \angle 8$

Write an equation in slope-intercept form for the line that satisfies the given conditions. (Lesson 3-4)
60. $m=2, y$-intercept $=4 y=2 x+4$
61. x-intercept is $2, y$-intercept $=-8 y=4 x-8$
62. passes through $(2,6)$ and $(-1,0) y=2 x+2$
63. $m=-4$, passes through $(-2,-3) \boldsymbol{y}=-4 x-11$

Getting Ready for

 the Next LessonPREREQUISITE SKILL Use the Pythagorean Theorem to find the length of the hypotenuse of each right triangle.

348 Chapter 7 Right Triangles and Trigonometry

The Pythagorean Theorem

In Chapter 1, you learned that the Pythagorean Theorem relates the measures of the legs and the hypotenuse of a right triangle. Ancient cultures used the Pythagorean Theorem before it was officially named in 1909.

Use square pieces of patty paper and algebra. Then you too can discover this relationship among the measures of the sides of a right triangle.

Activity

Use paper folding to develop the Pythagorean Theorem.

Step 1 On a piece of patty paper, make a mark along one side so that the two resulting segments are not congruent. Label one as a and the other as b.

Step 2 Copy these measures on the other sides in the order shown at the right. Fold the paper to divide the square into four sections. Label the area of each section.

Step 3 On another sheet of patty paper, mark the same lengths a and b on the sides in the different pattern shown at the right.

Step 4 Use your straightedge and pencil to connect the marks as shown at the right. Let c represent the length of each hypotenuse.

Step 5 Label the area of each section, which is $\frac{1}{2} a b$ for each triangle and c^{2} for the square.

Step 6
Place the squares side by side and color the corresponding regions that have the same area. For example, $a b=\frac{1}{2} a b+\frac{1}{2} a b$.

The parts that are not shaded tell us that $a^{2}+b^{2}=c^{2}$

Model

1. Use a ruler to find actual measures for a, b, and c. Do these measures measures confirm that $a^{2}+b^{2}=c^{2}$? yes
2. Repeat the activity with different a and b values. What do you notice? $a^{2}+b^{2}=c^{2}$
Analyze the model
3. Explain why the drawing at the right is an illustration of the Pythagorean Theorem. Sample answer: The sum of the areas of the two
 smaller squares is equal to the area of the largest square.

Geometry Activity
The Pythagorean Theorem

Resource Manager

Teaching Geometry with Manipulatives

- p. 115 (student recording sheet)
- p. 17 (ruler)

Glencoe Mathematics Classroom Manipulative Kit

- rulers

A Preview of Lesson 7-2

Getting Started

Objective Physically explore side-length relationships in the Pythagorean Theorem.
Materials patty paper, ruler, pencil

Teach

- For Step 2, have students use a ruler and a pencil to draw the lines that the creases make.
- Advise students that the key to this activity is making sure measures a and b are exactly the same on both sheets of paper. Without using a ruler, students may use one marked edge of the first paper to mark accurate lengths on the second paper.
- After Step 6, some students may still be skeptical that the shaded areas of the two pieces of patty paper are equal. Point out that the two pieces of paper are the same size, so they have the same area. Then ask students to cut out all the shaded triangles from the second piece of paper and arrange them so that they fit over the shaded areas on the first piece of paper.

Assess

Exercises 1 and 2 provide students with actual measurements they can use to confirm the Pythagorean Theorem. In Exercise 3, students prove that three lengths meet the criteria for the Pythagorean Theorem.

Study Notebook

Ask students to summarize what
they have learned about the
Pythagorean Theorem.

1 Focus

Transparency 7-2 Use as a quiz or review of Lesson 7-1.

Mathematical Background notes

 are available for this lesson on p. 340C.are right triangles used to build suspension
bridges?
Ask students:

- How can you reword the Pythagorean Theorem by substituting the names of the parts of the Talmadge Memorial Bridge for the legs and hypotenuse of the triangle? The sum of the squares of the measure of the height of the tower from the roadway and length of the roadway from the tower to the end of the bridge equals the square of the measure of the cable.
- You may notice that most suspension cables have some slack in them. In this case, does the actual length of the cable satisfy the criteria of the Pythagorean Theorem? Explain. No; a suspension cable is cut to allow for expansion and contraction due to temperature changes, and when it has slack, its length actually exceeds the length required to satisfy the Pythagorean Theorem.

7-2

 The Pythagorean Theorem and Its Converse
What You'll Learn

- Use the Pythagorean Theorem.
- Use the converse of the Pythagorean Theorem.

Vocabulary
Pythagorean triple

Study Tip
Look Back
To review finding the
hypotenuse of a right
triangle, see Lesson 1-3.

> How are right triangles used to build suspension bridges?

> The Talmadge Memorial Bridge over the Savannah River has two soaring towers of suspension cables. Note the right triangles being formed by the roadway, the perpendicular tower, and the suspension cables. The Pythagorean Theorem can be used to find measures in any right triangle.

THE PYTHAGOREAN THEOREM In Lesson 1-3, you used the Pythagorean Theorem to find the distance between two points by finding the length of the hypotenuse when given the lengths of the two legs of a right triangle. You can also find the measure of any side of a right triangle given the other two measures.

Theorem 7.4

Pythagorean Theorem In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.

Symbols: $a^{2}+b^{2}=c^{2}$

The geometric mean can be used to prove the Pythagorean Theorem.

Proof Pythagorean Theorem

Given: $\triangle A B C$ with right angle at C
Prove: $a^{2}+b^{2}=c^{2}$

Proof:

Draw right triangle $A B C$ so C is the right angle. Then draw the altitude from C to $\overline{A B}$. Let $A B=c$, $A C=b, B C=a, A D=x, D B=y$, and $C D=h$.

Two geometric means now exist.

$$
\left.\begin{array}{rlrlrl}
\frac{c}{a} & =\frac{a}{y} & & \text { and } & \frac{c}{b} & =\frac{b}{x} \\
a^{2} & =c y & & \text { and } & b^{2} & =c x
\end{array}\right) \text { Cross products }
$$

Add the equations.

$$
\begin{array}{lll}
a^{2}+b^{2}=c y+c x & & \\
a^{2}+b^{2}=c(y+x) & & \text { Factor. } \\
a^{2}+b^{2}=c^{2} & & \text { Since } c=y+x \text {, substitute } c \text { for }(y+x) .
\end{array}
$$

350 Chapter 7 Right Triangles and Trigonometry

Resource Manager

Workbook and Reproducible Masters

Chapter 7 Resource Masters

- Study Guide and Intervention, pp. 357-358
- Skills Practice, p. 359
- Practice, p. 360
- Reading to Learn Mathematics, p. 361
- Enrichment, p. 362
- Assessment, p. 407

Graphing Calculator and Computer Masters, p. 29
School-to-Career Masters, p. 13
Prerequisite Skills Workbook, pp. 11-12, 31-32
Teaching Geometry With Manipulatives Masters, pp. 114, 116

Transparencies

5-Minute Check Transparency 7-2
Answer Key Transparencies

- Technology

GeomPASS: Tutorial Plus, Lesson 13
Interactive Chalkboard

Maps

Due to the curvature of Earth, the distance between two points is often expressed as degree distance using latitude and longitude. This measurement closely approximates the distance on a plane. Source: NASA

Example 1 Find the Length of the Hypotenuse

- LONGITUDE AND LATITUDE NASA Dryden is located at about 117 degrees longitude and 34 degrees latitude. NASA Ames is located at about 122 degrees longitude and 37 degrees latitude. Use the lines of longitude and latitude to find the degree distance to the nearest tenth between NASA Dryden and NASA Ames.
The change in longitude between the two locations is $|117-122|$ or 5 degrees. Let this distance be a.

The change in latitude is $|37-34|$ or 3 degrees latitude. Let this distance be b.

Use the Pythagorean Theorem to find the distance in degrees from NASA Dryden to NASA Ames, represented by c.
$a^{2}+b^{2}=c^{2} \quad$ Pythagorean Theorem
$5^{2}+3^{2}=c^{2} \quad a=5, b=3$
$25+9=c^{2} \quad$ Simplify.

$$
\begin{array}{rlrl}
34 & =c^{2} \quad & \text { Add. } \\
\sqrt{34} & =c \quad & \text { Take the square root of each side. } \\
5.8 & \approx c & & \text { Use a calculator. }
\end{array}
$$

The degree distance between NASA Dryden and NASA Ames is about 5.8 degrees.

$$
\begin{aligned}
& \text { Example } 2 \text { Find the Length of a Leg } \\
& \text { Find } x \text {. } \\
& (X Y)^{2}+(Y Z)^{2}=(X Z)^{2} \\
& 7^{2}+x^{2}=14^{2} \\
& \text { Pythagorean Theorem } \\
& 49+x^{2}=196 \\
& \text { Simplify. } \\
& x^{2}=147 \quad \text { Subtract } 49 \text { from each side. } \\
& x=\sqrt{147} \text { Take the square root of each side. } \\
& x=7 \sqrt{3} \quad \text { Simplify. } \\
& x \approx 12.1 \quad \text { Use a calculator. }
\end{aligned}
$$

CONVERSE OF THE PYTHAGOREAN THEOREM The converse of the Pythagorean Theorem can help you determine whether three measures of the sides of a triangle are those of a right triangle.

Theorem 7.5

Converse of the Pythagorean Theorem If the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.
Symbols: If $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle.

2 Teach

THE PYTHAGOREAN THEOREM

In-Class Examples
1 LONGITUDE AND LATITUDE
Carson City, Nevada, is located at about 120 degrees longitude and 39 degrees latitude. Use the lines of longitude and latitude to find the degree distance to the nearest tenth degree if you were to travel directly from NASA Ames to Carson City, Nevada. about 2.8 degrees

Teaching Tip Students can also rewrite the Pythagorean Theorem as $b^{2}=c^{2}-a^{2}$ or $a^{2}=c^{2}-b^{2}$ when they are using it to find the measure of either leg of a right triangle.

2 Find d.

Building on Prior Knowledge

Students used the Distance Formula in Chapter 1 when they were learning how to calculate segment lengths. In this lesson, they use this formula to verify the side lengths of right triangles.

CONVERSE OF THE PYTHAGOREAN THEOREM

In-Class Examples

3 COORDINATE GEOMETRY

 Verify that $\triangle A B C$ is a right triangle.
$A B=\sqrt{104} ; B C=\sqrt{52} ;$
$A C=\sqrt{52} ; \triangle A B C$ is a right triangle because
$A C^{2}+B C^{2}=A B^{2}$.
4 Determine whether each set of measures are the sides of a right triangle. Then state whether they form a Pythagorean triple.
a. 9,12 , and 15

The segments form the sides of a right triangle, and the measures form a Pythagorean triple.
b. 21,42 , and 54

The segments do not form the sides of a right triangle, and the measures do not form a Pythagorean triple.
c. $4 \sqrt{3}, 4$, and 8 The segments form the sides of a right triangle, but the measures do not form a Pythagorean triple.

Distance Formula When using the Distance Formula, be sure to follow the order of operations carefully. Perform the operation inside the parentheses first, square each term, and then add

Example 3 Verify a Triangle is a Right Triangle

COORDINATE GEOMETRY Verify that $\triangle P Q R$ is a right triangle.
Use the Distance Formula to determine the lengths of the sides.

$$
\begin{aligned}
P Q & =\sqrt{(-3-3)^{2}+(6-2)^{2}} & & x_{1}=3, y_{1}=2, x_{2}=-3, y_{2}=6 \\
& =\sqrt{(-6)^{2}+4^{2}} & & \text { Subtract. } \\
& =\sqrt{52} & & \text { Simplify. } \\
Q R & =\sqrt{[5-(-3)]^{2}+(5-6)^{2}} & & x_{1}=-3, y_{1}=6, x_{2}=5, y_{2}=5 \\
& =\sqrt{8^{2}+(-1)^{2}} & & \text { Subtract. } \\
& =\sqrt{65} & & \text { Simplify. } \\
P R & =\sqrt{(5-3)^{2}+(5-2)^{2}} & & x_{1}=3, y_{1}=2, x_{2}=5, y_{2}=5 \\
& =\sqrt{2^{2}+3^{2}} & & \text { Subtract. } \\
& =\sqrt{13} & & \text { Simplify. }
\end{aligned}
$$

By the converse of the Pythagorean Theorem, if the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

$$
\begin{aligned}
P Q^{2}+P R^{2} & =Q R^{2} & & \text { Converse of the Pythagorean Theorem } \\
(\sqrt{52})^{2}+(\sqrt{13})^{2} & \stackrel{?}{=}(\sqrt{65})^{2} & & P Q=\sqrt{52}, P R=\sqrt{13}, Q R=\sqrt{65} \\
52+13 & \stackrel{?}{=} 65 & & \text { Simplify. } \\
65 & =65 & & \text { Add. }
\end{aligned}
$$

Since the sum of the squares of two sides equals the square of the longest side, $\triangle P Q R$ is a right triangle.

A Pythagorean triple is three whole numbers that satisfy the equation $a^{2}+b^{2}=c^{2}$, where c is the greatest number. One common Pythagorean triple is $3-4-5$, in which the sides of a right triangle are in the ratio $3: 4: 5$. If the measures of the sides of any right triangle are whole numbers, the measures form a Pythagorean triple.

Example 4 Pythagorean Triples

Determine whether each set of measures can be the sides of a right triangle. Then state whether they form a Pythagorean triple.
a. $8,15,16$

Since the measure of the longest side is 16,16 must be c, and a or b are 15 and 8 .

$a^{2}+b^{2}$	$=c^{2}$		Pythagorean Theorem
$8^{2}+15^{2}$	$\stackrel{?}{=} 16^{2}$		$a=8, b=15, c=16$
$64+225$	$\stackrel{?}{=} 256$		Simplify.
289	$\neq 256$		Add.

Since $289 \neq 256$, segments with these measures cannot form a right triangle. Therefore, they do not form a Pythagorean triple.

Differentiated Instruction

Visual/Spatial Explain that many artists use right triangles in their works because they are so appealing to the eye. Right triangles can serve as guidelines to draw mountains in the background or to create vanishing points and perspective. Ask students to construct one or more right triangles on a blank sheet of paper, find the lengths of the sides and then try to compose a picture using the triangle in an image or as a guide for an image. Examples could be a picture of a road vanishing in the distance or a house with right triangles as part of its roof.
b. 20, 48, and 52

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean Theorem } \\
20^{2}+48^{2} & \stackrel{?}{=} 52^{2} & & a=20, b=48, c=52 \\
400+2304 & \stackrel{?}{=} 2704 & & \text { Simplify. } \\
2704 & =2704 & & \text { Add. }
\end{aligned}
$$

These segments form the sides of a right triangle since they satisfy the Pythagorean Theorem. The measures are whole numbers and form a

Comparing
Numbers
If you cannot quickly identify the greatest number, use a calculator to find decimal values for each number and compare.

Pythagorean triple.
c. $\frac{\sqrt{3}}{5}, \frac{\sqrt{6}}{5}$, and $\frac{3}{5}$

$$
a^{2}+b^{2}=c^{2} \quad \text { Pythagorean Theorem }
$$

$$
\left(\frac{\sqrt{3}}{5}\right)^{2}+\left(\frac{\sqrt{6}}{5}\right)^{2} \stackrel{?}{=}\left(\frac{3}{5}\right)^{2} \quad a=\frac{\sqrt{3}}{5}, b=\frac{\sqrt{6}}{5}, c=\frac{3}{5}
$$

$$
\begin{array}{rlrl}
\frac{3}{25}+\frac{6}{25} & \stackrel{?}{=} \frac{9}{25} & & \text { Simplify. } \\
\frac{9}{25} & =\frac{9}{25} & \text { Add. }
\end{array}
$$

Since $\frac{9}{25}=\frac{9}{25}$, segments with these measures form a right triangle. However, the three numbers are not whole numbers. Therefore, they do not form a Pythagorean triple.

Check for Understanding

Concept Check 1. FIND THE ERROR Maria and Colin are determining whether 5-12-13 is a Pythagorean triple.

1. Maria; Colin does not have the longest side as the value of c.
2. Since the numbers in a Pythagorean triple satisfy the equation $a^{2}+b^{2}=c^{2}$, they represent the sides of a right triangle by the converse of the Pythagorean Theorem.

Guided Practice GUIDED PRACTICE KEY Exercises \quad Examples

Exercises	Exampies
4,5	2
6	1
7	3
$8-10$	4

Colin	Maria
$a^{2}+b^{2}=c^{2}$	$a^{2}+b^{2}=c^{2}$
$13^{2}+5^{2} \stackrel{?}{=} 12^{2}$	$5^{2}+12^{2} \stackrel{?}{=} 13^{2}$
$169+25 \stackrel{?}{=} 144$	$25+144 \stackrel{?}{=} 169$
$193 \neq 144$	$169=169$
no	yes

Who is correct? Explain your reasoning.
2. Explain why a Pythagorean triple can represent the measures of the sides of a right triangle.
3. OPEN ENDED Draw a pair of similar right triangles. List the corresponding sides, the corresponding angles, and the scale factor. Are the measures of the sides of each triangle a Pythagorean triple? See margin.

Find x.

6.

Lesson 7-2 The Pythagorean Theorem and Its Converse 353

Answers

Sample answer : $\triangle A B C \sim \triangle D E F, \angle A \cong \angle D, \angle B \cong \angle E$, and $\angle C \cong \angle F, \overline{A B}$ corresponds to $\overline{D E}, \overline{B C}$ corresponds to $\overline{E F}$, and $\overline{A C}$ corresponds to $\overline{D F}$. The scale factor is $\frac{2}{1}$. No; the measures of the sides do not form a Pythagorean triple since $6 \sqrt{5}$ and $3 \sqrt{5}$ are not whole numbers.

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 7.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y INIERVENIION

FIND THE ERROR
Point out that in all right triangles, the hypotenuse is always the longest side because it is opposite the 90° angle. Students have to make sure that the value they use to check for c is the largest value given. Also, tell students that the order of a and b does not matter. Maria could have used 12 for a and 5 for b, and she still would have been correct.

About the Exercises... Organization by Objective

- The Pythagorean Theorem: 12-17
- Converse of the Pythagorean Theorem: 18-29

Odd/Even Assignments

Exercises 12-29 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 48 and 49 require a graphing calculator.

Assignment Guide

Basic: 13-17 odd, 41, 43-70
Average: 13-43 odd, 44-70
Advanced: 12-44 even, 45-60 (optional: 61-70)

Helping You Remember

5. Many students who studied geometry long ago remember the Pythagorean Theorem as the equation $a^{2}+b^{2}=c^{2}$, but cannot tell you what this equation means. A formula is useless
if you don't know what it means and how to use it. How could you help someone who has forgoten the Pythagorean Theorem remember the meaning of the equation $a^{2}+b^{2}=c^{2}$? Sample answer: Draw a right triangle. Label the lengths of the two legs
as a and b and the length of the hypotenuse as c.

Application
7. COORDINATE GEOMETRY Determine whether $\triangle J K L$ with vertices $J(-2,2)$, $K(-1,6)$, and $L(3,5)$ is a right triangle. Explain.
yes; $J K=\sqrt{17}, K L=\sqrt{17}, J L=\sqrt{34} ;(\sqrt{17})^{2}+(\sqrt{17})^{2}=(\sqrt{34})^{2}$
Determine whether each set of numbers can be the measures of the sides of a right triangle. Then state whether they form a Pythagorean triple.
8. $15,36,39$ yes, yes
9. $\sqrt{40}, 20,21 \mathrm{no}$, no
10. $\sqrt{44}, 8, \sqrt{108}$ yes, no
11. COMPUTERS Computer monitors are usually measured along the diagonal of the screen. A 19 -inch monitor has a diagonal that measures 19 inches. If the height of the screen is 11.5 inches, how wide is the screen? about 15.1 in.

* indicates increased difficulty

Practice and Apply

22. yes, yes
23. yes, yes
24. no, no
25. no, no
31. 5-12-13
32. Sample answer: The triples are all multiples of the triple 5-12-13. 33. Sample answer: They consist of any number of similar triangles.
34. Yes; the measures of the sides are always multiples of 5,12 , and 13.

35a. 16-30-34;
24-45-51
35b. 18-80-82;
27-120-123
35c. 14-48-50;
21-72-75

Find x. 12. $\sqrt{15} \approx 3.9 \quad 13.4 \sqrt{3} \approx 6.9$
12.

13.

14. $4 \sqrt{74} \approx 34.4$

15.

$8 \sqrt{41} \approx 51.2$
16.

17.

COORDINATE GEOMETRY Determine whether $\triangle Q R S$ is a right triangle for the given vertices. Explain. 18-21. See margin for explanations.
18. $Q(1,0), R(1,6), S(9,0)$ yes
19. $Q(3,2), R(0,6), S(6,6)$ no
20. $Q(-4,6), R(2,11), S(4,-1)$ no
21. $Q(-9,-2), R(-4,-4), S(-6,-9)$ yes

Determine whether each set of numbers can be the measures of the sides of a right triangle. Then state whether they form a Pythagorean triple.
22. $8,15,17$
23. $7,24,25$
24. 20, 21, 31
25. $37,12,34$
26. $\frac{1}{5}, \frac{1}{7}, \frac{\sqrt{74}}{35}$
27. $\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{3}, \frac{35}{36}$
28. $\frac{3}{5}, \frac{4}{5}, 1$
29. $\frac{6}{7}, \frac{8}{7}, \frac{10}{7}$
yes, no
For Exercises 30-35, use the table of Pythagorean triples.
30. Copy and complete the table.
31. A primitive Pythagorean triple is a Pythagorean triple with no common factors except 1. Name any primitive Pythagorean triples contained in the table.
32. Describe the pattern that relates these sets of

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
5	12	13
10	24	$? \mathbf{2 6}$
15	$? 36$	39
$? \mathbf{2 0}$	48	52

33. These Pythagorean triples are called a family. Why do you think this is?
34. Are the triangles described by a family of Pythagorean triples similar? Explain.
35. For each Pythagorean triple, find two triples in the same family.
a. $8,15,17$
b. $9,40,41$
c. $7,24,25$

354 Chapter 7 Right Triangles and Trigonometry

354 Chapter 7 Right Triangles and Trigonometry

GEOGRAPHY For Exercises 36 and 37, use the following information.
Denver is located at about 105 degrees longitude and 40 degrees latitude. San Francisco is located at about 122 degrees longitude and 38 degrees latitude. Las Vegas is located at about 115 degrees longitude and 36 degrees latitude. Using the lines of longitude and latitude, find each degree distance.
36. San Francisco to Denver ≈ 17.1 degrees
37. Las Vegas to Denver ≈ 10.8 degrees
38. PROOF Write a paragraph proof of Theorem 7.5. See margin.
39. PROOF Use the Pythagorean Theorem and the figure at the right to prove the Distance Formula. See margin.

40. PAINTING A painter sets a ladder up to reach the bottom of a second-story window 16 feet above the ground. The base of the ladder is 12 feet from the house. While the painter mixes the paint, a neighbor's dog bumps the ladder, which moves the base 2 feet farther away from the house. How far up the side of the house does the ladder reach?
 $2 \sqrt{51} \mathrm{ft} \approx 14.3 \mathrm{ft}$
41. SAILING The mast of a sailboat is $\star 42$. LANDSCAPING Six congruent supported by wires called shrouds. What is the total length of wire needed to form these shrouds? square stones are arranged in an L-shaped walkway through a garden. If $x=15$ inches, then find the area of the L-shaped walkway.

Military
All branches of the military use navigation. Some of the jobs using navigation the jobs using navigat
include radar/sonar operators, boat operators, airplane navigators, and space operations officers.

Online Research For information about a career in the military, visit:
www.geometryonline. com/careers

- 43. NAVIGATION A fishing trawler off the coast of Alaska was ordered by the U.S. Coast Guard to change course. They were to travel 6 miles west and then sail 12 miles south to miss a large iceberg before continuing on the original course. How many miles out of the way did the trawler travel? about 4.6 mi

44. CRITICAL THINKING The figure at the right is a rectangular prism with $A B=8, B C=6$, and $B F=8$, and M is the midpoint of $B D$. Find $B D$ and $H M$. How are $E M, F M$, and $G M$ related to $H M$? $B D=10, H M=\sqrt{89} \approx 9.4 ; H M=E M=F M=G M$

www.geometryonline.com/self_check_quiz

Answers (p. 354)
18. $Q R=6, R S=10, Q S=8 ; 6^{2}+8^{2}=10^{2}$
19. $Q R=5, R S=6, Q S=5 ; 5^{2}+5^{2} \neq 6^{2}$
20. $Q R=\sqrt{61}, R S=\sqrt{148}, Q S=\sqrt{113} ;(\sqrt{61})^{2}+(\sqrt{113})^{2} \neq(\sqrt{148})^{2}$
21. $Q R=\sqrt{29}, R S=\sqrt{29}, Q S=\sqrt{58} ;(\sqrt{29})^{2}+(\sqrt{29})^{2}=(\sqrt{58})^{2}$

Answers

38. Given: $\triangle A B C$ with sides of measure a, b, and c, where

$$
c^{2}=a^{2}+b^{2}
$$

Prove: $\triangle A B C$ is a right triangle.

Proof: Draw $\overline{D E}$ on line ℓ with measure equal to a. At D, draw line $m \perp \overline{D E}$. Locate point F on m so that $D F=b$. Draw $\overline{F E}$ and call its measure x. Because $\triangle F E D$ is a right triangle, $a^{2}+b^{2}=x^{2}$. But $a^{2}+b^{2}=c^{2}$, so $x^{2}=c^{2}$ or $x=c$. Thus, $\triangle A B C \cong \triangle F E D$ by SSS.
This means $\angle C \cong \angle D$. Therefore, $\angle C$ must be a right angle, making $\triangle A B C$ a right triangle.
39. Given: $\triangle A B C$ with right angle at C, $A B=d$
Prove: $d=$

$$
\sqrt[a]{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Proof:
Statements (Reasons)

1. $\triangle A B C$ with right angle at C, $A B=d$ (Given)
2. $(C B)^{2}+(A C)^{2}=(A B)^{2}$ (Pythagorean Theorem)
3. $\left|x_{2}-x_{1}\right|=C B ;\left|y_{2}-y_{1}\right|=A C$ (Distance on a number line)
4. $\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}=d^{2}$ (Substitution)
5. $\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=d^{2}$ (Substitution)
6. $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=d$ (Take the square root of each side.)
7. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ (Reflexive Property)

4 Assess

Open-Ended Assessment

Modeling Ask students to recall how right triangles are modeled in suspension bridges, and have them demonstrate how a right triangle could model real world objects such as sailboats, flags, houses, bookshelves, and so on.

Getting Ready for
 Lesson 7-3

Prerequisite Skill In Lesson 7-3, students will be working more extensively with radical expressions to find side lengths of special right triangles. Use Exercises 61-70 to determine your students' familiarity with simplifying radical expressions.

Assessment Options

Quiz (Lessons 7-1 and 7-2) is available on p. 407 of the Chapter 7 Resource Masters.

Answers

45. Sample answer: The road, the tower that is perpendicular to the road, and the cables form the right triangles. Answers should include the following.

- Right triangles are formed by the bridge, the towers, and the cables.
- The cable is the hypotenuse in each triangle. the lesson. See margin.
How are right triangles used to build suspension bridges?
Include the following in your answer:
- the locations of the right triangles, and
- an explanation of which parts of the right triangle are formed by the cables.

46. In the figure, if $A E=10$, what is the value of h ? \mathbf{A}
(A) 6
(B) 8
(C) 10
(D) 12
47. ALGEBRA If $x^{2}+36=(9-x)^{2}$, then find x. C
(A) 6
(B) no solution
(C) 2.5
(D) 10
48. 3-4-5, 6-8-10,

12-16-20, 24-32-40, 27-36-45

Graphing Calculator
Standardized
Test Practice
A) (B) C (D)

PROGRAMMING For Exercises 48 and 49, use the following information. The TI-83 Plus program uses a procedure for finding Pythagorean triples that was developed by Euclid around 320 в.c. Run the program to generate a list of Pythagorean triples.
48. List all the members of the 3-4-5 family that are generated by the program.
49. A geometry student made the conjecture that if three whole numbers are a Pythagorean triple, then their product is divisible by 60 . Does this conjecture hold true for each triple that is produced by the program? yes

Maintain Your Skills

Mixed Review
Find the geometric mean between each pair of numbers. (Lesson 7-1)
50. 3 and 126
51. 9 and $126 \sqrt{3} \approx 10.452$. 11 and $7 \sqrt{77} \approx 8.8$
53. 6 and $93 \sqrt{6} \approx 7.3$
54. 2 and $7 \sqrt{14} \approx 3.7$
55. 2 and $5 \sqrt{10} \approx 3.2$
56. $\sqrt{10}$; it converges to 2.
57. 3; it approaches positive infinity.
58. 2; it converges to 1. 59. 0.25 ; it alternates between 0.25 and 4.

Getting Ready for the Next Lesson

Find the value of each expression. Then use that value as the next x in the expression. Repeat the process and describe your observations. (Lesson 6-6)
56. $\sqrt{2 x}$, where x initially equals 5
58. $x^{\frac{1}{2}}$, where x initially equals 4
57. 3^{x}, where x initially equals 1
59. $\frac{1}{x}$, where x initially equals 4
60. Determine whether the sides of a triangle could have the lengths 12,13 , and 25 . Explain. (Lesson 5-4) no; $12+13 \ngtr 25$

PREREQUISITE SKILL Simplify each expression by rationalizing the denominator. (To review simplifying radical expressions, see pages 744 and 745.)
55. $\frac{24}{\sqrt{2}} 12 \sqrt{2}$
61. $\frac{7}{\sqrt{3}} \frac{7 \sqrt{3}}{3}$
62. $\frac{18}{\sqrt{2}} 9 \sqrt{2}$
63. $\frac{\sqrt{14}}{\sqrt{2}} \sqrt{7}$
64. $\frac{3 \sqrt{11}}{\sqrt{3}} \sqrt{33}$
66. $\frac{12}{\sqrt{3}} 4 \sqrt{3}$
67. $\frac{2 \sqrt{6}}{\sqrt{3}} 2 \sqrt{2} 68 \cdot \frac{15}{\sqrt{3}} 5 \sqrt{3}$
69. $\frac{2}{\sqrt{8}} \frac{\sqrt{2}}{2}$
70. $\frac{25}{\sqrt{10}} \frac{5 \sqrt{10}}{2}$

What You'll Learn

- Use properties of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.
- Use properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

How is triangle tiling used in wallpaper design?
Triangle tiling is the process of laying copies of a single triangle next to each other to fill an area. One type of triangle tiling is wallpaper tiling. There are exactly 17 types of triangle tiles that can be used for wallpaper tiling.

Tile 4 is made up of two $45^{\circ}-45^{\circ}-90^{\circ}$ triangles that form a square. This tile is rotated to make the wallpaper design shown at the right.

PROPERTIES OF $45^{\circ}-45^{\circ}-90^{\circ}$ TRIANGLES Facts about $45^{\circ}-45^{\circ}-90^{\circ}$
triangles are used to solve many geometry problems. The Pythagorean Theorem allows us to discover special relationships that exist among the sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

Draw a diagonal of a square. The two triangles formed are isosceles right triangles. Let x represent the measure of each side and let d represent the measure of the hypotenuse.

$$
\begin{aligned}
d^{2} & =x^{2}+x^{2} & & \text { Pythagorean Theorem } \\
d^{2} & =2 x^{2} & & \text { Add. } \\
d & =\sqrt{2 x^{2}} & & \text { Take the positive square root of each side. } \\
d & =\sqrt{2} \cdot \sqrt{x^{2}} & & \text { Factor. } \\
d & =x \sqrt{2} & & \text { Simplify. }
\end{aligned}
$$

This algebraic proof verifies that the length of the hypotenuse of any $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times the length of its leg. The ratio of the sides is $1: 1: \sqrt{2}$.

Theorem 7.6

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

Lesson 7-3 Special Right Triangles 357

Workbook and Reproducible Masters

Chapter 7 Resource Masters

- Study Guide and Intervention, pp. 363-364
- Skills Practice, p. 365
- Practice, p. 366
- Reading to Learn Mathematics, p. 367
- Enrichment, p. 368

Prerequisite Skills Workbook, pp. 17-18 Teaching Geometry With Manipulatives Masters, p. 1

Resource Manager

Transparencies

5-Minute Check Transparency 7-3
Answer Key Transparencies
Technology
GeomPASS: Tutorial Plus, Lesson 14
Interactive Chalkboard

2 Teach

PROPERTIES OF $45^{\circ}-45^{\circ}-90^{\circ}$ TRIANGLES

In-Class Examples Power

1 WALLPAPER TILING Note that the figure in Example 1 can be divided into four equal square quadrants so that each square contains 8 triangles. What is the area of one of these squares if the hypotenuse of each $45^{\circ}-45^{\circ}-90^{\circ}$ triangle measures $7 \sqrt{2}$ millimeters? $196 \mathrm{~mm}^{2}$

Find a.

Teaching Tip Point out to

 students that one corner of the wallpaper square consists of four $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, the combination of which forms a new larger $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Explain how it is interesting that tiled groups of 4,8 , and 16 of the smaller triangles form larger $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.

Intervention Some students may have difficulty keeping the properties of $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ triangles straight. Suggest that they periodically reproduce the figures in Theorem 7.6 and Theorem 7.7 to keep these relationships fresh. Advise them, however, that they have the intuitive knowledge to derive either of these two figures by using the Pythagorean Theorem with a square or an equilateral triangle.

Example 1 Find the Measure of the Hypotenuse

WALLPAPER TILING Assume that the length of one of the legs of the $45^{\circ}-45^{\circ}-90^{\circ}$ triangles in the wallpaper in the figure is 4 inches. What is the length of the diagonal of the entire wallpaper square?

The length of each leg of the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is 4 inches. The length of the hypotenuse is $\sqrt{2}$ times as long as a leg. The length of the hypotenuse of one of the triangles is $4 \sqrt{2}$. There are four $45^{\circ}-45^{\circ}-90^{\circ}$ triangles along the diagonal of the square. So, the length of the diagonal of the square is $4(4 \sqrt{2})$ or $16 \sqrt{2}$ inches.

Example 2 Find the Measure of the Legs

Find x.
The length of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times the length of a leg of the triangle.

$$
\begin{aligned}
A B & =(A C) \sqrt{2} & & \\
6 & =x \sqrt{2} & & A B=6, A C=x \\
\frac{6}{\sqrt{2}} & =x & & \text { Divide each side by } \sqrt{2} . \\
\frac{6}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} & =x & & \text { Rationalize the denominator. } \\
\frac{6 \sqrt{2}}{2} & =x & & \text { Multiply. } \\
3 \sqrt{2} & =x & & \text { Divide. }
\end{aligned}
$$

PROPERTIES OF $30^{\circ}-60^{\circ}-90^{\circ}$ TRIANGLES There is also a special relationship among the measures of the sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
 To rationalize a denominator, multiply the fraction by 1 in the form of a radical over itself so that the product in the denominator is a rational number.

When an altitude is drawn from any vertex of an equilateral triangle, two congruent $30^{\circ}-60^{\circ}-90^{\circ}$ triangles are formed. $\overline{L M}$ and $\overline{K M}$ are congruent segments, so let $L M=x$ and $K M=x$. By the Segment Addition Postulate, $L M+K M=K L$. Thus, $K L=2 x$. Since $\triangle J K L$ is an equilateral triangle, $K L=J L=J K$. Therefore, $J L=2 x$ and $J K=2 x$.

Let a represent the measure of the altitude. Use the
 Pythagorean Theorem to find a.

$$
\begin{aligned}
(J M)^{2}+(L M)^{2} & =(J L)^{2} & & \text { Pythagorean Theorem } \\
a^{2}+x^{2} & =(2 x)^{2} & & J M=a, L M=x, J L=2 x \\
a^{2}+x^{2} & =4 x^{2} & & \text { Simplify. } \\
a^{2} & =3 x^{2} & & \text { Subtract } x^{2} \text { from each side. } \\
a & =\sqrt{3 x^{2}} & & \text { Take the positive square root of each side. } \\
a & =\sqrt{3} \cdot \sqrt{x^{2}} & & \text { Factor. } \\
a & =x \sqrt{3} & & \text { Simplify. }
\end{aligned}
$$

So, in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the measures of the sides are $x, x \sqrt{3}$, and $2 x$. The ratio of the sides is $1: \sqrt{3}: 2$.

358 Chapter 7 Right Triangles and Trigonometry

D A I L Y INIERVENIION

Differentiated Instruction

Logical/Mathematical Suggest that students close their books and divide a piece of paper into two columns. At the top of one column, ask them to draw a square with diagonal d and side x. At the top of the other column, ask students to draw an equilateral triangle with one altitude and tell them to label the segment that the altitude divides with two x 's. Then have students systematically use the Pythagorean Theorem to figure out the side relationships of the $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ triangles in these two figures.

Theorem 7.7

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is twice the length of the shorter leg, and the length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.

Example $30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

Find $A C$.
$\overline{A C}$ is the longer leg, $\overline{A B}$ is the shorter leg, and $\overline{B C}$ is the hypotenuse.

$$
\begin{array}{rlr}
A B & =\frac{1}{2}(B C) & \\
& =\frac{1}{2}(14) \text { or } 7 & B C=14 \\
A C & =\sqrt{3}(A B) & \\
& =\sqrt{3}(7) \text { or } 7 \sqrt{3} & A B=7
\end{array}
$$

Example 4 Special Triangles in a Coordinate Plane

COORDINATE GEOMETRY Triangle $P C D$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with right angle $C . \overline{C D}$ is the longer leg with endpoints $C(3,2)$ and $D(9,2)$. Locate point P in Quadrant I.
Graph C and $D . \overline{C D}$ lies on a horizontal gridline of the coordinate plane. Since $\overline{P C}$ will be perpendicular to $\overline{C D}$, it lies on a vertical gridline. Find the length of $\overline{C D}$.
$C D=|9-3|=6$
$\overline{C D}$ is the longer leg. $\overline{P C}$ is the shorter leg.
So, $C D=\sqrt{3}(P C)$. Use $C D$ to find $P C$.

$$
\begin{aligned}
C D & =\sqrt{3}(P C) & & \\
6 & =\sqrt{3}(P C) & & C D=6 \\
\frac{6}{\sqrt{3}} & =P C & & \text { Divide each side by } \sqrt{3} . \\
\frac{6}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & =P C & & \text { Rationalize the denominator. } \\
\frac{6 \sqrt{3}}{3} & =P C & & \text { Multiply. } \\
2 \sqrt{3} & =P C & & \text { Simplify. }
\end{aligned}
$$

Point P has the same x-coordinate as C. P is located $2 \sqrt{3}$ units above C.
So, the coordinates of P are $(3,2+2 \sqrt{3})$ or about $(3,5.46)$.
wwww.geometryonline.com/extra_examples
Lesson 7-3 Special Right Triangles 359

D A I L Y

INIERVENTION

Unlocking Misconceptions

$\mathbf{3 0} \mathbf{0}^{\circ} \mathbf{- 6 0}-\mathbf{9 0 ^ { \circ }}$ Triangles Point out that a common mistake is for students to quickly assume that the longer leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is twice the length of the shorter leg. Demonstrate for students that this cannot be so by drawing a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle on the board and extending the figure into an equilateral triangle. Explain that the shorter leg of the original right triangle is exactly half the distance of one side of the equilateral triangle. Tell students that the hypotenuse is also a side of the equilateral triangle, so this has to be the side that is twice the length of the shorter leg.

PROPERTIES OF
$30^{\circ}-60^{\circ}-90^{\circ}$ TRIANGLES

In-Class Examples

Power
Point ${ }^{\circledR}$
3 Find $Q R$.

$\frac{8 \sqrt{3}}{3} \mathrm{~cm}$
4) $\triangle W X Y$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with right angle X and $\overline{W X}$ as the longer leg. Graph points $X(-2,7)$ and $Y(-7,7)$, and locate point W in Quadrant III.

$w(-2,7-5 \sqrt{3})$

Study Notebook

Have students-

- add the definitions/examples of
the vocabulary terms to their
Vocabulary Builder worksheets for
Chapter 7.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...

Organization by Objective

- Properties of $45^{\circ}-45^{\circ}-90^{\circ}$

Triangles: 12, 13, 17, 22, 25

- Properties of $30^{\circ}-60^{\circ}-90^{\circ}$ Triangles: 14-16, 18-21, 23-24, 27-31

Odd/Even Assignments

Exercises 12-31 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13-37 odd, 41-66
Average: 13-41 odd, 42-66
Advanced: 12-40 even, 41-58 (optional: 59-66)
All: Quiz 1 (1-5)

Check for Understanding
Concept Check

1. OPEN ENDED Draw a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Be sure to label the angles and the sides and to explain how you made the drawing. 1-2. See margin.
2. Draw a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with the shorter leg 2 centimeters long. Label the angles and the remaining sides.
3. Write an equation to find the length of a rectangle that has a diagonal twice as long as its width. The length of the rectangle is $\sqrt{3}$ times the width; $\ell=\sqrt{3} w$.
Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4,5,11$	1,2
$6-8$	3
9,10	4

Find x and y.

$$
\begin{gathered}
y \\
x=3 ; y=3 \sqrt{2}
\end{gathered}
$$

$x=5 \sqrt{2} ;^{y} y=5 \sqrt{2}$
6.

Find the missing measures.
7. If $c=8$, find a and $b . \quad a=4 ; b=4 \sqrt{3}$
8. If $b=18$, find a and c. $a=6 \sqrt{3} ; c=12 \sqrt{3}$

Triangle $A B D$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with right angle B and with $\overline{A B}$ as the shorter leg. Graph A and B, and locate point D in Quadrant I. 9-10. See p. 399A.
9. $A(8,0), B(8,3)$
10. $A(6,6), B(2,6)$

Application
11. SOFTBALL Find the distance from home plate to second base if the bases are 90 feet apart. $90 \sqrt{2}$ or 127.28 ft

* indicates increased difficulty

Practice and Apply

Answers

1. Sample answer: Construct two perpendicular lines. Use a ruler to measure 3 cm from the point of intersection on the one ray. Use the compass to copy the 3 cm segment. Connect the two endpoints to form a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with sides of 3 cm and a hypotenuse of $3 \sqrt{2} \mathrm{~cm}$.
2. Sample answer: Draw a line using a ruler. Then use a protractor to measure a 90° angle. On one ray mark a 2 cm length, and at that endpoint use the protractor to measure a 30° angle toward the other ray. Where this ray intersects the other ray should form a 60° angle, completing the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with sides $2 \mathrm{~cm}, 2 \sqrt{3} \mathrm{~cm}$, and a hypotenuse of 4 cm .
3. The length of an altitude of an equilateral triangle is 12 feet. Find the length of a side of the triangle. $8 \sqrt{3} \mathrm{ft} \approx 13.86 \mathrm{ft}$
4. The perimeter of an equilateral triangle is 45 centimeters. Find the length of an altitude of the triangle. $7.5 \sqrt{3} \mathrm{~cm} \approx 12.99 \mathrm{~cm}$
5. The length of a diagonal of a square is $22 \sqrt{2}$ millimeters. Find the perimeter of the square. 88 mm
6. The altitude of an equilateral triangle is 7.4 meters long. Find the perimeter of the triangle. $14.8 \sqrt{3} \mathrm{~m} \approx 25.63 \mathrm{~m}$
7. The diagonals of a rectangle are 12 inches long and intersect at an angle of 60°. Find the perimeter of the rectangle. $12+12 \sqrt{3}$ or about 32.78 in.
8. The sum of the squares of the measures of the sides of a square is 256 . Find the measure of a diagonal of the square. $8 \sqrt{2} \approx 11.31$
9. Find x, y, z, and the perimeter of $A B C D$. $x=4 ; y=4 \sqrt{3} ; z=6 ;$ $24+4 \sqrt{2}+4 \sqrt{3}$ or ≈ 36.59 units

10. $\triangle P A B$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with right angle B. Find the coordinates of P in Quadrant I for $A(-3,1)$ and $B(4,1) .(4,8)$
11. $\triangle P G H$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with $m \angle P=90$. Find the coordinates of P in Quadrant I for $G(4,-1)$ and $H(4,5) .(1,2),(7,2)$
12. $\left(-3-\frac{13 \sqrt{3}}{3},-6\right)$
or about $(-10.51,-6) \star 30$

More About.is.

Triangle Tiling \cdot
Buildings in Federation Square in Melbourne, Australia, feature a tiling pattern called a pinwheel tiling. The sides of each right triangle are in the ratio $1: 2: \sqrt{5}$.
Source:
mww.federationsquare.com.au

34. There are no gaps

 because when a 30° angle is rotated 12 times, it rotates 360°.29. $\triangle P C D$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with right angle C and $\overline{C D}$ the longer leg. Find the coordinates of P in Quadrant III for $C(-3,-6)$ and $D(-3,7)$.
30. $\triangle P C D$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with $m \angle C=30$ and hypotenuse $\overline{C D}$. Find the coordinates of P for $C(2,-5)$ and $D(10,-5)$ if P lies above $\overline{C D}$.
$(8,-5+2 \sqrt{3})$
31. If $\overline{P Q} \| \overline{S R}$, use the figure to find a, b, c, and d.
$a=3 \sqrt{3}, b=9, c=3 \sqrt{3}, d=9$

- TRIANGLE TILING For Exercises 32-35, use the following information. Triangle tiling refers to the process of taking many copies of a single triangle and laying them next to each other to fill an area. For example, the pattern shown is composed of tiles like the one outlined.

32. How many $30^{\circ}-60^{\circ}-90^{\circ}$ triangles are used to create the basic circular pattern? 12
33. Which angle of the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
 is being rotated to make the basic shape? 30° angle
34. Explain why there are no gaps in the basic pattern.
35. Use grid paper to cut out $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. Color the same pattern on each triangle. Create one basic figure that would be part of a wallpaper tiling. See margin.

Lesson 7-3 Special Right Triangles 361
John Gollings, courtesy Federation Square

Answer

35. Sample answer:

Enrichment, p. 368

Constructing Values of Square Roots The diagram at the right shows a right isosceles triangle with
two legs of length 1 inch. By the Pythagorean Theorem, the lenth two legs of length 1 inch. By the Pythagorean Theorem, the length
of the hypotenuse is $\sqrt{2}$ inches. By constructing an adjicent right triangle with legs of $\sqrt{2}$ inches and 1 inch, you can create a segme
of length $\sqrt{3}$. By continuing this process as shown below, you can construct a

Continue con length $\sqrt{18 .}$

C

Study Guide and Intervention, p. 363 (shown) and p. 364

7. Find the perimeter of a square with diagonal 12 centimeters. $24 \sqrt{2} \approx 33.9 \mathrm{~cm}$
8. Find the diagonal of a square with perimeter 20 inches. $5 \sqrt{2} \approx 7.1 \mathrm{in}$.
9. Find the diagonal of a square with perimeter 28 meters. $7 \sqrt{2} \approx 9.9 \mathrm{~m}$

Reading to Learn

 Mathematics, p. 367Pre-Activity How is triangle tiling used in wallpaper design?
Read the introduction to Lesson $7-3$ at the top of page 357 in your textbook.
How can you most completely describe the larger triangle and the two How can you most completely describe the larger triangle and the two is
smaller tiangles in tile 15 Sampe answer: The larger triangle is
an isosceles obtuse triangle. The two smaller triangles are an isosceles obtuse triangle. The
congruent scalene right triangles.
How can you most completely describe the larger triangle and the two
smaller triangles in tile 16 ? Include angle smaller triangles in itile 16 ? Include angle meeasures ind describing gal the
triangles.) Sample answer: The larger triangle is equilateral, so triangles. Sample answer:T The larger triangle is equilateral, so
each of its angle measures is. 50 .he two manaller triangles
are congruent right triangles in which the angle measures are congruent right triangles in which the angle measures
are 30,60 , and 90 .

Reading the Lesson

1. Supply the correct number or numbers to complete each statement.
a. In a $45^{\circ} \cdot 455^{\circ}-90^{\circ}$ triangle, to find the length of the hypotenuse, multiply the length of a
leg by $\sqrt{2}$.
b. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, to find the length of the hypotenuse, multiply the length of
the shorter leg by $\frac{2}{}$.
c. In a $30^{\circ} \cdot 60^{\circ} \cdot 90^{\circ}$ triangle, the longer leg is opposite the angle with a measure of 60
d. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle,
the shorter leg by $\sqrt{3}$.
e. In an isosceles right triangle, each leg is opposite an angle with a measure of 45
f. In a $30^{\circ} 60^{\circ}-90^{\circ}$ triangle, to find the length of the shorter leg, divide the length of the
longer leg by $\sqrt{3}$.
g. In $30^{\circ} 60^{\circ} 90^{\circ}$ triangle, to find the length of the longer leg, divide the length of the
hypotenuse by 2 and multiply the result by $\sqrt{3}$.
h. To find the length of a side of a square, divide the length of the diagonal by $\sqrt{2}$
2. Indicate whether each statement is always, sometimes, or never true.
a. The lengths of the three sides of an isosceles triangle satisfy the Pythagorean
Theorem. sometimes
b. The lengths of the sides of $30^{\circ}-60^{\circ} \cdot 90^{\circ}$ triangle form a Pythagorean triple. never
c. The lengths of all three sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle are positive integers. never Helping You Remember
3. Some students find it easier to remember mathematical concepts in terms of specific the relationship between the lengths of tho thee specitics numbers in a tolp por pour Sample answerwer Draw a a $0^{\circ}-60^{\circ}-90^{\circ}$ triangle. .abel the length of the
shorter leg as 1. Then the length the hypotenuse is 2 , and the length shorter leg as 1. Then the length of the hypotenuse is 2 , and the length of
the longer leg is $\sqrt[3]{3}$. Just remember: $1,2, \sqrt{3}$.

Lesson 7-3 Special Right Triangles

Answers

42. Sample answer: Congruent

 triangles of different color can be arranged to create patterns. Answers should include the following.- 5, 9, 15, and 17; 3, 4, 6, 7, 10, 11, and 12
- Placing 45° angles next to one another forms 90° angles, which can be placed next to each other, leaving no holes.

36. Find x, y, and z.

$x=4 ; y=4 \sqrt{3} ;$ $z=2 \sqrt{6}$
37. If $B D=8 \sqrt{3}$ and $m \angle D H B=60$, find $B H$. 16

\star 39. In regular hexagon $U V W X Y Z$, each side is 12 centimeters long. Find $W Y$.

38. BASEBALL The diagram at the right shows some dimensions of Comiskey Park in Chicago, Illinois. $\overline{B D}$ is a segment from home plate to dead center field, and $A E$ is a segment from the left field foul-ball pole to the right field foul-ball pole. If the center fielder is standing at C, how far is he from home plate? $\frac{347 \sqrt{2}}{2} \approx 245.4 \mathrm{ft}$
39. CRITICAL THINKING Given figure $A B C D$, with $\overline{A B} \| \overline{D C}, m \angle B=60, m \angle D=45, B C=8$, and $A B=24$, find the perimeter. $52+4 \sqrt{3}+4 \sqrt{6}$ units

40. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How is triangle tiling used in wallpaper design?
Include the following in your answer:

- which of the numbered designs contain $30^{\circ}-60^{\circ}-90^{\circ}$ triangles and which contain $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, and
- a reason why rotations of the basic design left no holes in the completed design.

Standardized Test Practice

(A) (B) C) (D)

43. In the right triangle, what is $A B$ if $B C=6$? $C A$
(A) 12 units
(B) $6 \sqrt{2}$ units
(C) $4 \sqrt{3}$ units
(D) $2 \sqrt{3}$ units

44. SHORT RESPONSE For real numbers a and b, where $b \neq 0$, if $a \star b=\frac{a^{2}}{b^{2}}$, then $(3 \star 4)(5 \star 3)=$?.$\frac{25}{16}$

Maintain Your Skills

Mixed Review
Determine whether each set of measures can be the sides of a right triangle. Then state whether they form a Pythagorean triple. (Lesson 7-2)
45. $3,4,5$ yes, yes
46. $9,40,41$ yes, yes
47. 20, 21, 31 no, no
48. $20,48,52$ yes, yes
49. $7,24,25$ yes, yes
50. 12, 34, 37 no, no
52. $4 \sqrt{6} \approx 9.8$;
$4 \sqrt{2} \approx 5.7$;
$4 \sqrt{3} \approx 6.9$
53. $\frac{40}{3} ; \frac{5}{3}$;
$10 \sqrt{2} \approx 14.1$
58. $J K=\sqrt{13}$,
$K L=\sqrt{26}$,
$J L=\sqrt{53}$,
$R S=\sqrt{13}$,
$S T=\sqrt{26}$,
$R T=\sqrt{53} ;$
$\triangle J K L \cong \triangle R S T$ by SSS
Find x, y, and z. (Lesson 7-1)
51.

Write an inequality or equation relating each pair of angles. (Lesson 5-5)
54. $m \angle A L K, m \angle A L N ~ m \angle A L K<m \angle A L N$
55. $m \angle A L K, m \angle N L O \quad m \angle A L K<m \angle N L O$
56. $m \angle O L K, m \angle N L O \quad m \angle O L K>m \angle N L O$

57. $m \angle K L O, m \angle A L N ~ m \angle K L O=m \angle A L N$
58. Determine whether $\triangle J K L$ with vertices $J(-3,2), K(-1,5)$, and $L(4,4)$ is congruent to $\triangle R S T$ with vertices $R(-6,6), S(-4,3)$, and $T(1,4)$. Explain. (Lesson 4-4)

Getting Ready for the Next Lesson

PREREQUISITE SKILL Solve each equation.
59. $5=\frac{x}{3} 15$
60. $\frac{x}{9}=0.141 .26$
61. $0.5=\frac{10}{k} 20$
62. $0.2=\frac{13}{g} 65$
63. $\frac{7}{n}=0.2528$
64. $9=\frac{m}{0.8} 7.2$
65. $\frac{24}{x}=0.460$
66. $\frac{35}{y}=0.07500$

Practice Quiz 1

Lessons 7-1 through 7-3

Find the measure of the altitude drawn to the hypotenuse. (Lesson 7-1)
1.

$7 \sqrt{3} \approx 12.1$
2.

3. Determine whether $\triangle A B C$ with vertices $A(2,1), B(4,0)$, and $C(5,7)$ is a right triangle. Explain. (Lesson 7-2) yes; $A B=\sqrt{5}, B C=\sqrt{50}, A C=\sqrt{45} ;(\sqrt{5})^{2}+(\sqrt{45})^{2}=(\sqrt{50})^{2}$
Find x and y. (Lesson 7-3)
4.
 $x=3 ; y=3 \sqrt{2}$
5.

7-4 Trigonometry

1 Focus

5-Minute Check Transparency 7-4 Use as a quiz or review of Lesson 7-3.

Mathematical Background notes

 are available for this lesson on p. 340D.
How can surveyors determine angle measures?

Ask students:

- What side of a right triangle is represented by the theodolite's line of sight? the hypotenuse
- The Statue of Liberty is approximately 91.5 meters tall from the base of the pedestal to the tip of the torch. If a theodolite were placed 100 meters from the base of the pedestal, about how far would the theodolite be from the top of the torch? about 135.5 m

What You'll Learn

- Find trigonometric ratios using right triangles.
- Solve problems using trigonometric ratios.

Vocabulary

trigonometry
trigonometric ratio
sine
cosine
tangent

How
 can surveyors determine angle measures?

The old surveyor's telescope shown at right is called a theodolite (thee AH duh lite). It is an optical instrument used to measure angles in surveying, navigation, and meteorology. It consists of a telescope fitted with a level and mounted on a tripod so that it is free to rotate about its vertical and horizontal axes. After measuring angles, surveyors apply trigonometry to calculate distance or height.

TRIGONOMETRIC RATIOS The word trigonometry comes from two Greek terms, trigon, meaning triangle, and metron, meaning measure. The study of trigonometry involves triangle measurement. A ratio of the lengths of sides of a right triangle is called a trigonometric ratio. The three most common trigonometric ratios are sine, cosine, and tangent.

364 Chapter 7 Right Triangles and Trigonometry
Arthur Thevenart/CORBIS

Resource Manager

Workbook and Reproducible Masters

Chapter 7 Resource Masters

- Study Guide and Intervention, pp. 369-370
- Skills Practice, p. 371
- Practice, p. 372
- Reading to Learn Mathematics, p. 373
- Enrichment, p. 374
- Assessment, pp. 407, 409

School-to-Career Masters, p. 14
Prerequisite Skills Workbook, pp. 11-12
Teaching Geometry With Manipulatives
Masters, pp. 16, 17, 18, 117, 118

Transparencies

5-Minute Check Transparency 7-4
Answer Key Transparencies

- Technology

Interactive Chalkboard

Trigonometric ratios are related to the acute angles of a right triangle, not the right angle.

Study Tip
Equivalent Ratios Notice that the ratio leg opposite $\angle A$ is hypotenuse is the same as $\frac{\text { leg adjacent } \angle C}{\text { hypotenuse }}$ Thus, $\sin A=\cos C=\frac{a}{b}$. Likewise, $\cos A=$ $\sin B=\frac{c}{b}$.
3. Sample answer:

Regardless of the side lengths, the trigonometric ratio is the same when comparing angles in similar triangles.

Geometry Activity

Trigonometric Ratios

- Fold a rectangular piece of paper along a diagonal from A to C. Then cut along the fold to form right triangle $A B C$. Write the name of each angle on the inside of the triangle.

- Fold the triangle so that there are two segments perpendicular to $\overline{B A}$. Label points D, E, F, and G as shown. Use a ruler to measure $\overline{A C}, \overline{A B}, \overline{B C}, \overline{A F}, \overline{A G}$, $\overline{F G}, \overline{A D}, \overline{A E}$, and $\overline{D E}$ to the nearest millimeter.

Analyze

1. What is true of $\triangle A E D, \triangle A G F$, and $\triangle A B C$? They are similar triangles.
2. Copy the table. Write the ratio of the side lengths for each trigonometric ratio. Then calculate a value for each ratio to the nearest ten-thousandth.

	In $\triangle A E D$	in $\triangle A G F$	In $\triangle A B C$
$\sin A$	$\frac{D E}{A D} \approx 0.6114$	$\frac{F G}{A F} \approx 0.6114$	$\frac{B C}{A C} \approx 0.6114$
$\cos A$	$\frac{A E}{A D} \approx 0.7913$	$\frac{A G}{A F} \approx 0.7913$	$\frac{A B}{A C} \approx 0.7913$
$\tan A$	$\frac{D E}{A E} \approx 0.7727$	$\frac{F G}{A G} \approx 0.7727$	$\frac{B C}{A B} \approx 0.7727$

3. Study the table. Write a sentence about the patterns you observe with the trigonometric ratios.
4. What is true about $m \angle A$ in each triangle? $m \angle A$ is the same in all triangles.

As the Geometry Activity suggests, the value of a trigonometric ratio depends only on the measure of the angle. It does not depend on the size of the triangle.

Example 1 Find Sine, Cosine, and Tangent Ratios

Find $\sin R, \cos R, \tan R, \sin S, \cos S$, and $\tan S$.
Express each ratio as a fraction and as a decimal.

$$
\begin{aligned}
\sin R & =\frac{\text { opposite leg }}{\text { hypotenuse }} \\
& =\frac{S T}{R S} \\
& =\frac{4}{5} \text { or } 0.8 \\
\sin S & =\frac{\text { opposite leg }}{\text { hypotenuse }} \\
& =\frac{R T}{R S} \\
& =\frac{3}{5} \text { or } 0.6
\end{aligned}
$$

$$
\cos R=\frac{\text { adjacent leg }}{\text { hypotenuse }}
$$

$$
=\frac{R T}{R S}
$$

$$
=\frac{3}{5} \text { or } 0.6
$$

$$
\cos S=\frac{\text { adjacent leg }}{\text { hypotenuse }}
$$

$$
=\frac{S T}{R S}
$$

$$
=\frac{4}{5} \text { or } 0.8
$$

$\tan R=\frac{\text { opposite leg }}{\text { legater }}$

$$
=\frac{S T}{R T}
$$

$\tan R=\frac{\text { opposite leg }}{\text { adjacent leg }}$

$$
=\frac{4}{3} \text { or } 1 . \overline{3}
$$

$$
\tan S=\frac{\text { opposite leg }}{\text { adjacent leg }}
$$

$$
=\frac{R T}{S T}
$$

$$
=\frac{3}{4} \text { or } 0.75
$$

www.geometryonline.com/extra_examples

Geometry Activity

Materials: rectangular paper, scissors, metric ruler, pencil

- When students are folding the triangle to form two segments that are parallel to $\overline{B C}$, tell them that it does not matter how close or far apart these segments are, and encourage the class to come up with a variety of different lengths to demonstrate that this activity would work for any lengths.
- Students can also begin the activity with different sizes of rectangular paper.

2 Teach

TRIGONOMETRIC RATIOS

Building on Prior Knowledge

In Lesson 7-1, students learned that they could use the Distance Formula and the Pythagorean Theorem to find lengths in a coordinate plane. They revisit these methods in this lesson and combine them with trigonometry to find the angles of a triangle in a coordinate plane.

In-Class Example

Teaching Tip Assure the class that sine, cosine, and tangent are very useful and not as imposing as they first seem. Explain that if students regularly practice using these ratios to solve problems, they will become as familiar as squaring and taking the square root of numbers and are just as easy to key into a calculator.
1 Find $\sin L, \cos L, \tan L, \sin N$, $\cos N$, and $\tan N$. Express each ratio as a fraction and as a decimal.

$\sin L=\frac{8}{17}$ or 0.47
$\cos L=\frac{15}{17}$ or 0.88
$\tan L=\frac{8}{15}$ or 0.53
$\sin N=\frac{15}{17}$ or 0.88
$\cos N=\frac{8}{17}$ or 0.47
$\tan N=\frac{15}{8}$ or 1.88
Teaching Tip Encourage students to familiarize themselves with using their calculators to find cosines, sines and tangents and their inverses. Allow students to practice with easy values, such as $\cos 0^{\circ}=1, \sin 30^{\circ}=0.5$, $\cos ^{-1} 0.5=60^{\circ}$, etc., so they can be sure they are using their calculators correctly.

2 Find each value to the nearest ten thousandth.
a. $\tan 56^{\circ} 1.4826$
b. $\cos 89^{\circ} 0.0175$

USE TRIGONOMETRIC RATIOS

In-Class Examples
3 EXERCISING A fitness trainer sets the incline on a treadmill to 7°. The walking surface is 5 feet long. Approximately how many inches did the trainer raise the end of the treadmill from the floor?

$\approx 7.3 \mathrm{in}$.
4 COORDINATE GEOMETRY
Find $m \angle X$ in right $\triangle X Y Z$ for $X(-2,8), Y(-6,4)$, and $Z(-3,1)$.

≈ 36.9

Study Tip
Graphing
Calculator Be sure your calculator is in degree mode rather than radian mode. Your calculator may require you to input the angle before using the trigonometric key.

Study Tip

Tangent The tangent of angle A is the same as the slope of the line through the origin that forms an angle of measure A with the positive x-axis.

Example 2 Use a Calculator to Evaluate Expressions

Use a calculator to find each value to the nearest ten thousandth.
a. $\cos 39^{\circ}$

> KEYSTROKES: COS 39 ENTER
> $\cos 39^{\circ} \approx 0.7771$
b. $\sin 67^{\circ}$

KEYSTROKES:
SIN 67 ENTER $\sin 67.9205048535$ 5
$\sin 67^{\circ} \approx 0.9205$

USE TRIGONOMETRIC RATIOS You can use trigonometric ratios to find the missing measures of a right triangle if you know the measures of two sides of a triangle or the measure of one side and one acute angle.

Example 3 Use Trigonometric Ratios to Find a Length
SURVEYING Dakota is standing on the ground 97 yards from the base of a cliff. Using a theodolite, he noted that the angle formed by the ground and the line of sight to the top of the cliff was 56°. Find the height of the cliff to the nearest yard.
Let x be the height of the cliff in yards.

$$
\begin{aligned}
\tan 56^{\circ} & =\frac{x}{97} & & \tan =\frac{\text { leg opposite }}{\text { leg adjacent }} \\
97 \tan 56^{\circ} & =x & & \text { Multiply each side by } 97 .
\end{aligned}
$$

Use a calculator to find x.
KEYSTROKES: 97 TAN 56 ENTER 143.8084139

The cliff is about 144 yards high.

When solving equations like $3 x=-27$, you use the inverse of multiplication to find x. In trigonometry, you can find the measure of the angle by using the inverse of sine, cosine, or tangent.

Given equation	To find the angle	Read as
$\sin A=x$	$A=\sin ^{-1}(x)$	A equals the inverse sine of x.
$\cos A=y$	$A=\cos ^{-1}(y)$	A equals the inverse cosine of y.
$\tan A=z$	$A=\tan ^{-1}(z)$	A equals the inverse tangent of z.

Example 4 Use Trigonometric Ratios to Find an Angle Measure
COORDINATE GEOMETRY Find $m \angle A$ in right triangle $A B C$ for $A(1,2), B(6,2)$, and $C(5,4)$.
Explore You know the coordinates of the vertices of a right triangle and that $\angle C$ is the right angle. You need to find the measure of one of the angles.

Plan Use the Distance Formula to find the measure of each side. Then use one of the trigonometric ratios to write an equation. Use the inverse to
 find $m \angle A$.

Differentiated Instruction

Auditory/Musical The easiest way for auditory learners to remember the ratios for sine, cosine and tangent is for them to chant SOH-CAH-TOA. When introducing this mnemonic device to students, have them repeat it as a class a few times in rhythm. Point out that SOH and CAH each have one syllable because the " H " is silent, so students can remember that one "silent" hypotenuse is involved for the sine and cosine ratios. TOA has two syllables and involves the two legs for the tangent ratio.

$$
\begin{aligned}
A B & =\sqrt{(6-1)^{2}+(2-2)^{2}} & B C & =\sqrt{(5-6)^{2}+(4-2)^{2}} \\
& =\sqrt{25+0} \text { or } 5 & & =\sqrt{1+4} \text { or } \sqrt{5}
\end{aligned}
$$

Calculators The second functions of the SIN, COS, and TAN keys are usually the inverses.

$$
\begin{aligned}
A C & =\sqrt{(5-1)^{2}+(4-2)^{2}} \\
& =\sqrt{16+4} \\
& =\sqrt{20} \text { or } 2 \sqrt{5}
\end{aligned}
$$

Use the cosine ratio.

$$
\begin{aligned}
\cos A & =\frac{A C}{A B} & & \cos =\frac{\text { leg adjacent }}{\text { hypotenuse }} \\
\cos A & =\frac{2 \sqrt{5}}{5} & & A C=2 \sqrt{5} \text { and } A B=5 \\
A & =\cos ^{-1}\left(\frac{2 \sqrt{5}}{5}\right) & & \text { Solve for } A .
\end{aligned}
$$

Use a calculator to find $m \angle A$.
KEYSTROKES: 2nd [COS ${ }^{-1}$] 2nd $[\sqrt{ }] 5 \square \square 5$ ENTER $m \angle A \approx 26.56505118$
The measure of $\angle A$ is about 26.6.
Examine
Use the sine ratio to check the answer.
$\sin A=\frac{B C}{A B} \quad \sin =\frac{\text { leg opposite }}{\text { hypotenuse }}$
$\sin A=\frac{\sqrt{5}}{5} \quad B C=\sqrt{5}$ and $A B=5$
KEYSTROKES: 2nd $\left[\operatorname{SIN}^{-1}\right]$ 2nd $[\sqrt{ }] 5 \square \square 5$ ENTER
$m \angle A \approx 26.56505118$
The answer is correct.

Check for Understanding

Concept Check

1. The triangles are similar, so the ratios remain the same.
2. Explain why trigonometric ratios do not depend on the size of the right triangle.
3. OPEN ENDED Draw a right triangle and label the measures of one acute angle and the measure of the side opposite that angle. Then solve for the remaining measures. 2-4. See margin.
4. Compare and contrast the sine, cosine, and tangent ratios.
5. Explain the difference between $\tan A=\frac{x}{y}$ and $\tan ^{-1}\left(\frac{x}{y}\right)=A$.

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
5,6	1
$7-12$	2
17	3
$13-16$	4

Use $\triangle A B C$ to find $\sin A, \cos A, \tan A, \sin B, \cos B$, and $\tan B$. Express each ratio as a fraction and as a decimal to the nearest hundredth. 5-6. See margin.
5. $a=14, b=48$, and $c=50$
6. $a=8, b=15$, and $c=17$

Use a calculator to find each value. Round to the nearest ten-thousandth.
7. $\sin 57^{\circ} 0.8387$
8. $\cos 60^{\circ} 0.5000$
9. $\cos 33^{\circ} 0.8387$
10. $\tan 30^{\circ} 0.5774$
11. $\tan 45^{\circ} 1.0000$
12. $\sin 85^{\circ} 0.9962$

Answers

2. Sample answer:

$m \angle B=90$,
$m \angle C=55$,
$b \approx 26.2, c \approx 21.4$
3. All three ratios involve two sides of a right triangle. The sine ratio is the measure of the opposite leg divided by the measure of the hypotenuse. The cosine ratio is the measure of the adjacent leg divided by the measure of the hypotenuse. The tangent ratio is the measure of the opposite leg divided by the measure of the adjacent leg.
4. The tan is the ratio of the measure of the opposite leg divided by the measure of the adjacent leg for a given angle in a right triangle. The $\tan ^{-1}$ is the measure of the angle with a certain tangent ratio.

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 7.
- include the "SOH-CAH-TOA" mnemonic device and an example similar to Example I on p. 365 for quick reference.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...

Organization by Objective

- Trigonometric Ratios: 18-36
- Use Trigonometric Ratios: 37-48, 52-54

Odd/Even Assignments

Exercises 18-54 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 22-27 require a scientific calculator.

Assignment Guide

Basic: 19-49 odd, 59, 61-64, 69-82 (optional: 65-68)
Average: 19-61 odd, 62-64, 69-82 (optional: 65-68)
Advanced: 18-60 even, 61-76 (optional: 77-82)

$$
\begin{aligned}
& 5 . \frac{14}{50}=0.28 ; \frac{48}{50}=0.96 ; \frac{14}{48} \approx 0.29 ; \\
& \frac{48}{50}=0.96 ; \frac{14}{50}=0.28 ; \frac{8}{14} \approx 3.43 \\
& 6 . \frac{8}{17} \approx 0.47 ; \frac{15}{17} \approx 0.88 ; \frac{8}{15} \approx 0.53 ; \\
& \frac{15}{17} \approx 0.88 ; \frac{8}{17} \approx 0.47 ; \frac{15}{8} \approx 1.88
\end{aligned}
$$

Study Guide and Intervention,
p. 369 (shown) and p. 370
Trigonometric Ratios The ratio of the lengths of two sides of a right
triangle is called a triogoometric ratio. The there most common ratios
ree sine cosine and tangent which are abbeviates sinc cos, and tan, triangle is called a trigonometric ratio The three most common ratios
are sine cosine, and tangent, which are abbreviated $s i n$, cos, and tan,
respectively.

Helping You Remember

3. How can the co in cosine help you to remember the
cosines of the two acute angles of a right triangle?

Sample answer: The complementary angles. The cosine of an acute angle is equal to of its complement.

Find the measure of each angle to the nearest tenth of a degree.
13. $\tan A=1.4176 m \angle A \approx 54.8$
14. $\sin B=0.6307 m \angle B \approx 39.1$

COORDINATE GEOMETRY Find the measure of the angle to the nearest tenth in each right triangle $A B C$.
15. $\angle A$ in $\triangle A B C$, for $A(6,0), B(-4,2)$, and $C(0,6) m \angle A \approx 33.7$
16. $\angle B$ in $\triangle A B C$, for $A(3,-3), B(7,5)$, and $C(7,-3) \boldsymbol{m} \angle \boldsymbol{B} \approx \mathbf{2 6 . 6}$

Application 17. SURVEYING Maureen is standing on horizontal ground level with the base of the CN Tower in Toronto, Ontario. The angle formed by the ground and the line segment from her position to the top of the tower is 31.2°. She knows that the height of the tower to the top of the antennae is about 1815 feet. Find her distance from the CN Tower to the nearest foot. 2997 ft

* indicates increased difficulty

Practice and Apply

Practice and	
Homewark Help	
For	See Exercises
Examples	
$28-21$,	1
$28-36$	
$22-27$	2
$43-48$	3
$37-42$,	4
$52-54$	\vdots
Extra Practice	
See page 767.	

Use $\triangle P Q R$ with right angle R to find $\sin P, \cos P, \tan P$, $\sin Q, \cos Q$, and $\tan Q$. Express each ratio as a fraction, and as a decimal to the nearest hundredth. 18-21. See margin.

18. $p=12, q=35$, and $r=37$
19. $p=\sqrt{6}, q=2 \sqrt{3}$, and $r=3 \sqrt{2}$
20. $p=\frac{3}{2}, q=\frac{3 \sqrt{3}}{2}$, and $r=3$
21. $p=2 \sqrt{3}, q=\sqrt{15}$, and $r=3 \sqrt{3}$

Use a calculator to find each value. Round to the nearest ten-thousandth.
22. $\sin 6^{\circ} 0.1045$
23. $\tan 42.8^{\circ} 0.9260$
24. $\cos 77^{\circ} 0.2250$
25. $\sin 85.9^{\circ} 0.9974$
26. $\tan 12.7^{\circ} 0.2254$
27. $\cos 22.5^{\circ} 0.9239$

Use the figure to find each trigonometric ratio. Express answers as a fraction and as a decimal rounded to the nearest ten-thousandth.
28. $\frac{\sqrt{26}}{26} \approx 0.1961$
28. $\sin A$
29. $\tan B$
31. $\sin x^{\circ}$
32. $\cos x^{\circ}$
30. $\cos A$
33. $\tan A$
34. $\cos B$
35. $\sin y^{\circ}$

29. $\frac{5}{1}=5.0000$

$$
0
$$

36. $\tan x^{\circ}$

Find the measure of each angle to the nearest tenth of a degree.
31. $\frac{5 \sqrt{26}}{26} \approx 0.9806$
32. $\frac{\sqrt{26}}{26} \approx 0.1961$
37. $\sin B=0.724546 .4 \quad$ 38. $\cos C=0.249375 .6$
39. $\tan E=9.461884 .0$
40. $\sin A=0.456727 .2$
41. $\cos D=0.121283 .0$
42. $\tan F=0.427923 .2$

Find x. Round to the nearest tenth.
43.

44. 44.9

45. 28.2

46.

$29.1-47$.

22.6
48. 39.8

368 Chapter 7 Right Triangles and Trigonometry
David P. FrazierPhoto Researchers

368 Chapter 7 Right Triangles and Trigonometry
56. $x=41.8$; $y=29.2$
57. $x=17.1$; $y=23.4$
58. $x=38.4$; $y=32.6$
59. about 272,837 astronomical units 60 . The stellar parallax would be too small. 62. See margin.

More About

$\stackrel{1}{4}$

Astronomy
The stellar parallax is one of several methods of triangulation used to determine the distance of stars from the sun. Another method is trigonometric parallax, which measures the displacement of a nearby star relative to more distant star.

Source: www.infoplease.com
49. AVIATION A plane is one mile above sea level when it begins to climb at a constant angle of 3° for the next 60 ground miles. About how far above sea level is the plane after its climb? 4.1 mi

SAFETY For Exercises 50 and 51, use the following information.
To guard against a fall, a ladder should make an angle of 75° or less with the ground.
50. What is the maximum height that a 20 -foot ladder can reach safely? 19.32 ft
51. How far from the building is the base of the ladder at the maximum height? 5.18 ft

COORDINATE GEOMETRY Find the measure of each angle to the nearest tenth in each right triangle.
52. $\angle J$ in $\triangle J C L$ for $J(2,2), C(2,-2)$, and $L(7,-2)$ about 51.3
53. $\angle C$ in $\triangle B C D$ for $B(-1,-5), C(-6,-5)$, and $D(-1,2)$ about 54.5
54. $\angle X$ in $\triangle X Y Z$ for $X(-5,0), Y(7,0)$, and $Z(0, \sqrt{35}) 49.8$
\star 55. Find the perimeter of $\triangle A B C$ if $m \angle A=35, m \angle C=90$, and $A B=20$ inches. about 47.9 in .
Find x and y. Round to the nearest tenth.

ASTRONOMY For Exercises 59 and 60, use the following information.
\cdots One way to find the distance between the sun and a relatively close star is to determine the angles of sight for the star exactly six months apart. Half the measure formed by these two angles of sight is called the stellar parallax. Distances in space are sometimes measured in astronomical units. An astronomical unit is equal to the average distance between Earth and the sun.

59. Find the distance between Alpha Centauri and the sun.
60. Make a conjecture as to why this method is used only for close stars.
61. CRITICAL THINKING Use the figure at the right to find $\sin x^{\circ} . \underline{2 \sqrt{2}}$
62.

Answer the question that was posed at the beginning of the lesson.
How do surveyors determine angle measures?
Include the following in your answer:

Exercise 61

- where theodolites are used, and
- the kind of information one obtains from a theodolite.

Answers (p. 368)

18. $\frac{12}{37} \approx 0.32 ; \frac{35}{37} \approx 0.95 ; \frac{12}{35} \approx 0.34 ; \frac{35}{37} \approx 0.95 ; \frac{12}{37} \approx 0.32 ; \frac{35}{12} \approx 2.92$
19. $\frac{\sqrt{3}}{3} \approx 0.58 ; \frac{\sqrt{6}}{3} \approx 0.82 ; \frac{\sqrt{2}}{2} \approx 0.71 ; \frac{\sqrt{6}}{3} \approx 0.82 ; \frac{\sqrt{3}}{3} \approx 0.58 ; \sqrt{2} \approx 1.41$
20. $\frac{1}{2}=0.5 ; \frac{\sqrt{3}}{2} \approx 0.87 ; \frac{\sqrt{3}}{3} \approx 0.58 ; \frac{\sqrt{3}}{2} \approx 0.87 ; \frac{1}{2}=0.5 ; \sqrt{3} \approx 1.73$
21. $\frac{2}{3} \approx 0.67 ; \frac{\sqrt{5}}{3} \approx 0.75 ; \frac{2 \sqrt{5}}{5} \approx 0.89 ; \frac{\sqrt{5}}{3} \approx 0.75 ; \frac{2}{3} \approx 0.67 ; \frac{\sqrt{5}}{2} \approx 1.12$

Answer

62. Sample answer: Surveyors use a theodolite to measure angles to determine distances and heights. Answers should include the following.

- Theodolites are used in surveying, navigation, and meteorology. They are used to measure angles.
- The angle measures from two points, which are a fixed distance apart, to a third point.

4 Assess

Open-Ended Assessment

Speaking Draw and label the sides and angles of several right triangles on the board, and call on volunteers to name the sides they would use to find the sine, cosine, and tangent of the angles. Encourage students to use the terms opposite, adjacent, and hypotenuse when naming the sides.

Getting Ready for

Lesson 7-5
Prerequisite Skill Students will learn about angles of elevation and depression in Lesson 7-5. They will use angle relationships and trigonometry to find distances and angles. Use Exercises 77-82 to determine your students' familiarity with determining angle relationships among angles formed by parallel lines and a transversal.

Assessment Options

Quiz (Lessons 7-3 and 7-4) is available on p. 407 of the Chapter 7 Resource Masters.

Mid-Chapter Test (Lessons 7-1

through 7-4) is available on p. 409 of the Chapter 7 Resource Masters.

Answers

65. $\csc A=\frac{5}{3} ; \sec A=\frac{5}{4} ; \cot A=\frac{4}{3}$;
$\csc B=\frac{5}{4} ; \sec B=\frac{5}{3} ; \cot B=\frac{3}{4}$
66. $\csc A=\frac{13}{12} ; \sec A=\frac{13}{5}$;
$\cot A=\frac{5}{12} ; \csc B=\frac{13}{5}$;
$\sec B=\frac{13}{12} ; \cot B=\frac{12}{5}$
67. $\csc A=2 ; \sec A=\frac{2 \sqrt{3}}{3}$;
$\cot A=\sqrt{3} ; \csc B=\frac{2 \sqrt{3}}{3} ;$
$\sec B=2 ; \cot B=\frac{\sqrt{3}}{3}$
68. $\csc A=\sqrt{2} ; \sec A=\sqrt{2}$;
$\cot A=1 ; \csc B=\sqrt{2}$;
$\sec B=\sqrt{2} ; \cot B=1$

Standardized
Test Practice
(A) (B) C D
63. Find $\cos C$. C
(A) $\frac{3}{5}$
(B) $\frac{3}{4}$
(C) $\frac{4}{5}$
(D) $\frac{5}{4}$

64. ALGEBRA If $x^{2}=15^{2}+24^{2}-15(24)$, find x. B
(A) 20.8
(B) 21
(C) 12
(D) 9

Extending the Lesson

Each of the basic trigonometric ratios has a reciprocal ratio. The reciprocals of the sine,
cosine, and tangent are called the cosecant, secant, and the cotangent, respectively.

Reciprocal	Trigonometric Ratio	Abbreviation	Definition
$\frac{1}{\sin A}$	cosecant of $\angle A$	$\csc A$	$\frac{\text { measure of the hypotenuse }}{\text { measure of the leg opposite } \angle A}=\frac{c}{a}$
$\frac{1}{\cos A}$	secant of $\angle A$	$\sec A$	$\frac{\text { measure of the hypotenuse }}{\text { measure of the leg adjacent } \angle A}=\frac{c}{b}$
$\frac{1}{\tan A}$	cotangent of $\angle A$	$\cot A$	$\frac{\text { measure of the leg adjacent } \angle A}{\text { measure of the leg opposite } \angle A}=\frac{b}{a}$

Use $\triangle A B C$ to find $\csc A, \sec A, \cot A, \csc B, \sec B$, and $\cot B$. Express each ratio as a fraction or as a radical in simplest form. 65-68. See margin.
65. $a=3, b=4$, and $c=5$
66. $a=12, b=5$, and $c=13$
67. $a=4, b=4 \sqrt{3}$, and $c=8$
68. $a=2 \sqrt{2}, b=2 \sqrt{2}$, and $c=4$

Maintain Your Skills

Mixed Review Find each measure. (Lesson 7-3)
69. If $a=4$, find b and $c . b=4 \sqrt{3}, c=8$
70. If $b=3$, find a and $c . a=\sqrt{3}, c=2 \sqrt{3}$
71. If $c=5$, find a and $b . a=2.5, b=2.5 \sqrt{3}{ }^{c}$

Determine whether each set of measures can be the sides of a right triangle.
Then state whether they form a Pythagorean triple. (Lesson 7-2)
72. 4,5,6 no, no 73. 5, 12,13 yes, yes 74. 9,12, 15 yes, yes $75.8,12,16$ no, no
76. TELEVISION During a 30 -minute television program, the ratio of minutes of commercials to minutes of the actual show is $4: 11$. How many minutes are spent on commercials? (Lesson 6-1) 8 min

Getting Ready for
the Next Lesson

PREREQUISITE SKILL Find each angle measure if $h \| k$. (To review angles formed by parallel lines and a transversal, see Lesson 3-2.)
77. $m \angle 15117$
78. $m \angle 730$
79. $m \angle 3150$
80. $m \angle 1263$
81. $m \angle 1163$
82. $m \angle 4150$

370 Chapter 7 Right Triangles and Trigonometry

Angles of Elevation and Depression

What Youll Learn

- Solve problems involving angles of elevation.
- Solve problems involving angles of depression.
- angle of elevation - angle of depression

How do airline pilots use angles
 of elevation and depression?

A pilot is getting ready to take off from Mountain Valley airport. She looks up at the peak of a mountain immediately in front of her. The pilot must estimate the speed needed and the angle formed by a line along the runway and a line from the plane to the peak of the mountain to clear the mountain.

ANGLES OF ELEVATION An

angle of elevation is the angle between the line of sight and the horizontal when an observer looks upward.

Example 1 Angle of Elevation

AVIATION The peak of Goose Bay Mountain is 400 meters higher than the end of a local airstrip. The peak rises above a point 2025 meters from the end of the airstrip. A plane takes off from the end of the runway in the direction of the mountain at an angle that is kept constant until the peak has been cleared. If the pilot wants to clear the mountain by 50 meters, what should the angle of elevation be for the takeoff to the nearest tenth of a degree?
Make a drawing.

Since $C B$ is 400 meters and $B D$ is 50 meters, $C D$ is 450 meters. Let x represent $m \angle D A C$.

$$
\begin{aligned}
\tan x^{\circ} & =\frac{C D}{A C} & & \tan =\frac{\text { opposite }}{\text { adjacent }} \\
\tan x^{\circ} & =\frac{450}{2025} & & C D=450, A C=2025 \\
x & =\tan ^{-1}\left(\frac{450}{2025}\right) & & \text { Solve for } x . \\
x & \approx 12.5 & & \text { Use a calculator. }
\end{aligned}
$$

The angle of elevation for the takeoff should be more than 12.5°.

Workbook and Reproducible Masters

Chapter 7 Resource Masters

Teaching Geometry With Manipulatives
Masters, p. 18

- Study Guide and Intervention, pp. 375-376
- Skills Practice, p. 377
- Practice, p. 378
- Reading to Learn Mathematics, p. 379
- Enrichment, p. 380

1 Focus

5-Minute Check
 Transparency 7-5 Use as a

 quiz or review of Lesson 7-4.Mathematical Background notes are available for this lesson on p. 340D.

How
 do airline pilots use angles of elevation and

 depression?
Ask students:

- In the right triangle formed by the pilot's scenario, what triangle side does the height of the mountain represent? What does the line along the runway represent? the side opposite the unknown angle, the side adjacent to the unknown angle
- If the pilot is going to calculate the angle that she needs to clear the mountain given the height of the mountain and the horizontal distance from her takeoff point to the base of the mountain, what trigonometric ratio would she use? tangent

Resource Manager

Transparencies

5-Minute Check Transparency 7-5
Real-World Transparency 7
Answer Key Transparencies
Technology
GeomPASS: Tutorial Plus, Lesson 15
Interactive Chalkboard

2 Teach

ANGLE OF ELEVATION

In-Class Example

Power
 Point ${ }^{\circledR}$

1 CIRCUS ACTS At the circus, a person in the audience at ground level watches the high-wire routine. A 5 -foot6 -inch tall acrobat is standing on a platform that is 25 feet off the ground. How far is the audience member from the base of the platform, if the angle of elevation from the audience member's line of sight to the top of the acrobat is 27° ? about 60 ft

ANGLE OF DEPRESSION

In-Class Examples

Power

Point ${ }^{\circ}$
Teaching Tip Remind students to draw upon their previous knowledge of angle relationships formed by two parallel lines and a transversal. Students may want to review these relationships.

2 A wheelchair ramp is 3 meters long and inclines at 6°. Find the height of the ramp to the nearest tenth centimeter. about 31.4 cm

3 Vernon is on the top deck of a cruise ship and observes two dolphins following each other directly away from the ship in a straight line. Vernon's position is 154 meters above sea level, and the angles of depression to the two dolphins are 35° and 36°. Find the distance between the two dolphins to the nearest meter. about 8 m

ANGLES OF DEPRESSION
An angle of depression is the angle between the line of sight when an observer looks downward, and the horizontal.

Standardized
 Test Practice (A) (B) C (D)

Example 2 Angle of Depression

Short-Response Test Item

The tailgate of a moving van is 3.5 feet above the ground. A loading ramp is attached to the rear of the van at an incline of 10°. Find the length of the ramp to the nearest tenth foot.

Read the Test Item

The angle of depression between the ramp and the horizontal is 10°. Use trigonometry to find the length of the ramp.

Solve the Test Item
Method 1

The ground and the horizontal level with the back of the van are parallel.
Therefore, $m \angle D A B=m \angle A B C$ since they are alternate interior angles.

$$
\sin 10^{\circ}=\frac{3.5}{A B}
$$

$A B \sin 10^{\circ}=3.5$

$$
\begin{aligned}
& A B=\frac{3.5}{\sin 10^{\circ}} \\
& A B \approx 20.2
\end{aligned}
$$

The ramp is about 20.2 feet long.

Method 2

The horizontal line from the back of the van and the segment from the ground to the back of the van are perpendicular. So, $\angle D A B$ and $\angle B A C$ are complementary angles. Therefore, $m \angle B A C=90-10$ or 80 .

$$
\begin{aligned}
\cos 80^{\circ} & =\frac{3.5}{A B} \\
A B \cos 80^{\circ} & =3.5 \\
A B & =\frac{3.5}{\cos 80^{\circ}} \\
A B & \approx 20.2
\end{aligned}
$$

Angles of elevation or depression to two different objects can be used to find the distance between those objects.

Example 3 Indirect Measurement

Olivia is in a lighthouse on a cliff. She observes two sailboats due east of the lighthouse. The angles of depression to the two boats are 33° and 57°. Find the distance between the two sailboats to the nearest foot.
$\triangle C D A$ and $\triangle C D B$ are right triangles, and and $C D=110+85$ or 195 . The distance between the boats is $A B$ or $B D-A D$. Use the right triangles to find these two lengths.

Kinesthetic Using a meterstick and a calculator, groups of students can find angles of elevation and depression for different objects in the classroom. Groups can measure one person's eye level from the floor, and the topmost height of a wall clock from the floor. The person stands 5 feet away from the clock, and the group calculates the angle of elevation from the person's line of sight to the top of the object. Repeat for items placed on the floor, and include variations like having the person stand on a chair, or placing two objects on the floor a certain distance from each other.

Chapter 7 Right Triangles and Trigonometry

Because $\overline{C E}$ and $\overline{D B}$ are horizontal lines, they are parallel. Thus, $\angle E C B \cong \angle C B D$ and $\angle E C A \cong \angle C A D$ because they are alternate interior angles. This means that $m \angle C B D=33$ and $m \angle C A D=57$.

$$
\begin{array}{rlrl}
\tan 33^{\circ} & =\frac{195}{D B} & & \text { tan = o opposite } \\
\text { adjacent } ; m \angle C B D=33 \\
D B \tan 33^{\circ} & =195 & & \text { Multiply each side by } D B . \\
D B & =\frac{195}{\tan 33^{\circ}} & & \text { Divide each side by } \tan 33^{\circ} . \\
D B & \approx 300.27 & & \text { Use a calculator. } \\
\tan 57^{\circ} & =\frac{195}{D A} & & \text { tan }=\frac{\text { opposite }}{\text { adjacent }} ; m \angle C A D=57 \\
D A \tan 57^{\circ} & =195 & & \text { Multiply each side by } D A . \\
D A & =\frac{195}{\tan 57^{\circ}} & & \text { Divide each side by } \tan 57^{\circ} . \\
D A & \approx 126.63 & & \text { Use a calculator. }
\end{array}
$$

The distance between the boats is $D B-D A$.
$D B-D A \approx 300.27-126.63$ or about 174 feet.

Check for Understanding

Concept Check

1. OPEN ENDED Find a real-life example of 1-2. See margin. an angle of depression. Draw a diagram and identify the angle of depression.
2. Explain why an angle of elevation is given that name.
3. Name the angles of depression and elevation in the figure. The angle of depression is $\angle F P B$ and the angle of elevation is $\angle T B P$.
Guided Practice

4,5	1
6	2

$7 \quad 3$
4. AVIATION A pilot is flying at 10,000 feet and wants to take the plane up to 20,000 feet over the next 50 miles. What should be his angle of elevation to the nearest tenth? (Hint: There are 5280 feet in a mile.) about 2.2°
5. SHADOWS Find the angle of elevation of the sun when a 7.6-meter flagpole casts a 18.2-meter shadow. Round to the nearest tenth of a degree. 22.7°

6. SALVAGE A salvage ship uses sonar to determine that the angle of depression to a wreck on the ocean floor is 13.25°. The depth chart shows that the ocean floor is 40 meters below the surface. How far must a diver lowered from the salvage ship walk along the
 ocean floor to reach the wreck? about 169.9 m
7. SHORT RESPONSE From the top of a 150-foot high tower, an air traffic controller observes an airplane on the runway. To the nearest foot, how far from the base of the tower is the airplane? 706 ft

Lesson 7-5 Angles of Elevation and Depression 373

Standardized Test Practice (A) (B) C (D)

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 7.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises... Organization by Objective
 - Angles of Elevation: 12, 14-18
 - Angles of Depression: 8-11, 13, 19-20

Odd/Even Assignments

Exercises 8-20 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercise 23 requires the Internet or other research materials.

Assignment Guide

Basic: 9-23 odd, 26-48
Average: 9-25 odd, 26-48
Advanced: 8-26 even, 27-40 (optional: 41-48)

Study Guide and Intervention, p. 375 (shown) and P. 376	
Angles of Elevation Many real-world problems that invo looking up to an object can be described in terms of an angle elevation which is the angle between elevation, which is the angle between an observer's line of sigl and a horizontal line.	
The angle of elevation from point A to the top of a cliff is 34°. If point A is 1000 feet from the base of the cliff, how high is the cliff? Let $x=$ the height of the cliff.	
Bxarces	
Solve each problem. Round measures of segments to the nearest whole number and angles to the nearest degree.	
1. The angle of elevation from point A to the top of a hill is 49°. If point A is 400 feet from the base of the hill, how high is the hill? 460 ft	
2. Find the angle of elevation of the sun when a 12.5 -meter-t telephone pole casts a 18 -meter-long shadow. 35°	
3. A ladder leaning against a building makes an angle of 78° with the ground. The foot of the ladder is 5 feet from the building. How long is the ladder? 24 ft	
4. A person whose eyes are 5 feet above the ground is standing on the runway of an airport 100 feet from the control tower That person observes an air traffic controller at the window of the 132 -foot tower. What is the angle of elevation? 52°	
Skills Practice, p. 377 and Practice, P. 378 (shown)	
Name the angle of depression or angle of elevation in each figure. 1. 2. $\angle T R Z ; \angle Y Z R$ $\angle P R M ; \angle L M R$ 3. WATER TOWERS A student can see a water tower from the closest point of the soccer field at San Lobos High School. The edge of the soccer field is about 110 feet from the water tower and the water tower stands at a height of 32.5 feet. What is the angle of elevation if the eye level of the student viewing the tower from the edge of the soccer field is 6 feet above the ground? Round to the nearest tenth degree. about 13.5°	
4. CONSTRUCTION A roofer props a ladder against a wall so that the top of the ladder reaches a 30 -foot roof that needs repair. If the angle of elevation from the bottom of the ladder to the roof is 55°, how far is the ladder from the base of the wall? Round your answer to the nearest foot. about 21 ft	
5. TOWN ORDINANCES The town of Belmont restricts the height of flagpoles to 25 feet on any property. Lindsay wants to determine whether her school is in compliance with the regulation. Her eye level is 5.5 feet from the ground and she stands 36 feet from the flagpole. If the angle of elevation is about 25°, what is the height of the flagpole to the nearest tenth foot? about 22.3 ft	
6. GEOGRAPHY Stephan is standing on a mesa at the Painted Desert. The elevation of the mesa is about 1380 meters and Stephan's eye level is 1.8 meters above ground. If Stephan can see a band of multicolored shale at the bottom and the angle of depression is 29°, about how far is the band of shale from his eyes? Round to the nearest meter. about 2850 m	
7. INDIRECT MEASUREMENT Mr. Dominguez is standing on a 40 -foot ocean bluff near his home. He can see his two dogs on the beach below. If his line of sight is 6 feet above the ground and the angles of depression to his dogs are 34° and 48°, how far apart are the dogs to the nearest foot? about 27 ft ,	
Reading to Learn Mathematics, p. 379	LL
Pre-Activity How do airline pilots use angles of elevation and depression? Read the introduction to Lesson $7-5$ at the top of page 371 in your textbook. What does the angle measure tell the pilot? Sample answer: how steep her ascent must be to clear the peak	
Reading the Lesson	
1. Refer to the figure. The two observers are looking at one another. Select the correct choice for each question. a. What is the line of sight? iii (i) line $R S$ (ii) line $S T$ (iii) line $R T$ (iv) line $T U$ b. What is the angle of elevation? ii (i) $\angle R S T$ (ii) $\angle S R T$ (iii) $\angle R T S$ (iv) $\angle U T R$ c. What is the angle of depression? iv (i) $\angle R S T$ (ii) $\angle S R T$ (iii) $\angle R T S$ (iv) $\angle U T R$ d. How are the angle of elevation and the angle of depression related? ii (i) They are complementary. (ii) They are congruent. (iii) They are supplementary. (iv) The angle of elevation is larger than the angle of depression. e. Which postulate or theorem that you learned in Chapter 3 supports your answer for part c? iv i) Corresponding Angles Postulate (ii) Alternate Exterior Angles Theorem (iii) Consecutive Interior Angles Theorem (iv) Alternate Interior Angles Theorem	
2. A student says that the angle of elevation from his eye to the top of a flagpole is 135°. What is wrong with the student's statement? An angle of elevation cannot be obtuse.	
Helping You Remember 3. A good way to remember something is to explain it to someone else. Suppose a classmate finds it difficult to distinguish between angles of elevation and angles of depression. What are some hints you can give her to help her get it right every time? Sample answers: (1) The angle of depression and the angle of elevation are both measured between the horizontal and the line of sight. (2) The angle of depression is always congruent to the angle of elevation in the same diagram. (3) Associate the word elevation with the word up and the word depression with the word down.	

Railroads
The Monongahela Incline is 635 feet long with a vertical rise of 369.39 feet. It was built at a cost of $\$ 50,000$ and opened on May 28, 1870. It is still used by commuters to and from Pittsburgh. Source: www. portauthority.org
8. BOATING Two boats are observed by a parasailer 75 meters above a lake. The angles of depression are 12.5° and 7°. How far apart are the boats? about 273 m
9. GOLF A golfer is standing at the tee, looking up to the green on a hill. If the tee is 36 yards lower than the green and the angle of elevation from the tee to the hole is 12°, find the distance from
 the tee to the hole. about 173.2 yd
10. AVIATION After flying at an altitude of 500 meters, a helicopter starts to descend when its ground distance from the landing pad is 11 kilometers. What is the angle of depression for this part of the flight? about 2.6°
11. SLEDDING A sledding run is 300 yards long with a vertical drop of 27.6 yards. Find the angle of depression of the run. about 5.3°
12. RAILROADS The Monongahela Incline overlooks the city of Pittsburgh, Pennsylvania. Refer to the information at the left to determine the incline of the railway. about 35.6°
13. AMUSEMENT PARKS From the top of a roller coaster, 60 yards above the ground, a rider looks down and sees the merry-go-round and the Ferris wheel. If the angles of depression are
 11° and 8° respectively, how far apart are the merry-go-round and the Ferris wheel? about 118.2 yd

CIVIL ENGINEERING For Exercises 14 and 15, use the following information.

 The percent grade of a highway is the ratio of the vertical rise or fall over a given horizontal distance. The ratio is expressed as a percent to the nearest whole number. Suppose a highway has a vertical rise of 140 feet for every 2000 feet of horizontal distance.14. Calculate the percent grade of the highway. 7\%
15. Find the angle of elevation that the highway makes with the horizontal. about 4°
16. SKIING A ski run has an angle of elevation of 24.4° and a vertical drop of 1100 feet. To the nearest foot, how long is the ski run? 2663 ft

GEYSERS For Exercises 17 and 18, use the following information.

Kirk visits Yellowstone Park and Old Faithful on a perfect day. His eyes are 6 feet from the ground, and the geyser can reach heights ranging from 90 feet to 184 feet.
17. If Kirk stands 200 feet from the geyser and the eruption rises 175 feet in the air, what is the angle of elevation to the top of the spray to the nearest tenth? about 40.2°
18. In the afternoon, Kirk returns and observes the geyser's spray reach a height of 123 feet when the angle of elevation is 37°. How far from the geyser is Kirk standing to the nearest tenth of a foot? about 155.3 ft

* 19. BIRDWATCHING Two observers are 200 feet apart, in line with a tree containing a bird's nest. The angles of elevation to the bird's nest are 30° and 60°. How far is each observer from the base of the tree? $100 \mathrm{ft}, 300 \mathrm{ft}$

374 Chapter 7 Right Triangles and Trigonometry

Enrichment, p. 380

Reading Mathematics

Reading Mathematics			
The three most common trigonometric ratios are sine, cosine, and tangent. Three other ratios are the cosecant, secant, and cotangent. The chart belowshows abbreviations and definitions for all six ratios. shows abbreviations and definitions for all six ratios.Refer to the triangle at the right.			
Abbreviation	Read as:	Ratio	
$\sin A$	sine ot $\angle A$	$\frac{\text { leg opposite } \angle A}{\text { hypotenuse }}=\frac{a}{c}$	
$\cos A$	the cosine of $\angle A$	$\underset{\substack{\text { legadigaentit } \\ \text { hypotanse }}}{\text { a }}=\frac{b}{c}$	
$\tan A$	the tangent of $\angle A$	$\frac{\text { leg opposite } \angle A}{\log \text { andeant to } \angle A}=\frac{A}{b}$	
csc A	the cosecant tot $\angle A$	$\frac{\text { hypotenuse }}{\text { leg oposite } \angle A}=\frac{c}{a}$	
$\sec A$	the secant ot $\angle A$	$\frac{\text { hyporense }}{\text { legadeant }}$	

374 Chapter 7 Right Triangles and Trigonometry
20. METEOROLOGY The altitude of the base of a cloud formation is called the ceiling. To find the ceiling one night, a meteorologist directed a spotlight vertically at the clouds. Using a theodolite placed 83 meters from the spotlight and 1.5 meters above the ground, he found the angle of elevation to be $62 \cdot 7^{\circ}$. How high was the ceiling? about 162.3 m

MEDICINE For Exercises 21-23, use the following information.
A doctor is using a treadmill to assess the strength of a patient's heart. At the beginning of the exam, the 48 -inch long treadmill is set at an incline of 10°.

Travel.
Ayers Rock is the largest monolith, a type of rock formation, in the world. It is approximately 3.6 kilometers long and 2 kilometers wide. The rock is believed to be the tip of a mountain, two thirds of which is underground. Source: wwwatn.com.au
21. How far off the horizontal is the raised end of the treadmill at the beginning of the exam? about 8.3 in.
22. During one stage of the exam, the end of the treadmill is 10 inches above the horizontal. What is the incline of the treadmill to the nearest degree? 12°
23. Suppose the exam is divided into five stages and the incline of the treadmill is increased 2° for each stage. Does the end of the treadmill rise the same distance between each stage? n

- 24. TRAVEL Kwan-Yong uses a theodolite to measure the angle of elevation from \star the ground to the top of Ayers Rock to be 15.85°. He walks half a kilometer closer and measures the angle of elevation to be 25.6°. How high is Ayers Rock to the nearest meter? about 348 m
* 25. AEROSPACE On July 20, 1969, Neil Armstrong became the first human to walk on the moon. During this mission, Apollo 11 orbited the moon three miles above the surface. At one point in the orbit, the onboard guidance system measured the angles of depression to
 the far and near edges of a large crater. The angles measured 16° and 2°, respectively. Find the distance across the crater. about 5.1 mi

Online Research Data Update Use the Internet to determine the angle of depression formed by someone aboard the international space station looking down to your community. Visit www.geometryonline.com/data_update to learn more.
26. CRITICAL THINKING Two weather observation stations are 7 miles apart. A weather balloon is located between the stations. From Station 1, the angle of elevation to the weather balloon is 33°. From Station 2, the angle of elevation to the balloon is 52°. Find the altitude of the balloon to the nearest tenth of a mile. about 3.0 mi
27.

WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How do airline pilots use angles of elevation and depression?
Include the following in your answer:

- when pilots use angles of elevation or depression, and
- the difference between angles of elevation and depression.

Plymouth South High School, Plymouth, MA
I like to make a clinometer (also called a hypsometer) and have my students try to measure objects in the schoolyard, such as height of the building, height
27. Answers should include the following.

- Pilots use angles of elevation when they are ascending and angles of depression when descending.
- Angles of elevation are formed when a person looks upward and angles of depression are formed when a person looks downward.

Teacher to Teacher

Susan M. Parece of the flagpole, and height of the lights. (Directions can be found at www.globe.org.uk/activities/toolkit/tollkit.pdf.)

4 Assess

Open-Ended Assessment

Modeling Using a ruler, have students model different angles of elevation and depression and name real-world situations that the angle depicted could be modeling.

Getting Ready for
 Lesson 7-6

Prerequisite Skill Students will learn about the Law of Sines in Lesson 7-6. They will use proportions to solve for side lengths and angle measures. Use Exercises 41-48 to determine your students' familiarity with solving proportions.

Standardized
Test Practice
28. The top of a signal tower is 120 meters above sea level. The angle of depression from the top of tower to a passing ship is 25°. How many meters from the foot of the tower is the ship? B
(A) 283.9 m
(B) 257.3 m
(C) 132.4 m
(D) 56 m
29. ALGEBRA If $\frac{y}{28}=\frac{x}{16}$, then find x when $y=\frac{1}{2}$. A
(A) $\frac{2}{7}$
(B) $\frac{4}{7}$
(C) $\frac{7}{4}$
(D) $3 \frac{1}{2}$

Maintain Your Skills

Mixed Review Find the measure of each angle to the nearest tenth of a degree. (Lesson 7-4)
30. $\cos A=0.671747 .8$
31. $\sin B=0.512730 .8$
32. $\tan C=2.175865 .3$
33. $\cos D=0.342170 .0$
34. $\sin E=0.14558 .4$
35. $\tan F=0.354119 .5$

Find x and y. (Lesson 7-3)
36.

$14 \sqrt{3} ; 28$
38.

39. HOBBIES A twin-engine airplane used for medium-range flights has a length of 78 meters and a wingspan of 90 meters. If a scale model is made with a wingspan of 36 centimeters, find its length. (Lesson 6-2) 31.2 cm
40. Copy and complete the flow proof. (Lesson 4-6)

Given: $\angle 5 \cong \angle 6$

$$
\overline{F R} \cong \overline{G S}
$$

Prove: $\angle 4 \cong \angle 3$

Proof:

Getting Ready for

PREREQUIITE SKILL Solve each proportion.
(To review solving proportions, see Lesson 6-1.)
41. $\frac{x}{6}=\frac{35}{42} 5$
42. $\frac{3}{x}=\frac{5}{45} 27$
43. $\frac{12}{17}=\frac{24}{x} 34$
44. $\frac{24}{36}=\frac{x}{15} 10$
45. $\frac{12}{13}=\frac{48}{x} 52$
46. $\frac{x}{18}=\frac{5}{8} 11.25$
47. $\frac{28}{15}=\frac{7}{x} 3.75$
48. $\frac{x}{40}=\frac{3}{26} \frac{60}{13}$

What You'll Learn

- Use the Law of Sines to solve triangles.
- Solve problems by using the Law of Sines.

Vocabulary

- Law of Sines solving a triangle

Study Tip

Obtuse Angles There are also values for $\sin A, \cos A$, and $\tan A$, when $A \geq 90^{\circ}$. Values of the ratios for these angles will be found using the trigonometric functions on your calculator.

How are triangles used in radio astronomy?

The Very Large Array (VLA), one of the world's premier astronomical radio observatories, consists of 27 radio antennas in a Y-shaped configuration on the Plains of San Agustin in New Mexico. Astronomers use the VLA to make pictures from the radio waves emitted by astronomical objects. Construction of the antennas is supported by a variety of triangles, many of which are not right triangles.

THE LAW OF SINES In trigonometry, the Law of Sines can be used to find missing parts of triangles that are not right triangles.

Proof Law of Sines

$\triangle A B C$ is a triangle with an altitude from C that intersects $\overline{A B}$ at D. Let h represent the measure of $\overline{C D}$. Since $\triangle A D C$ and $\triangle B D C$ are right triangles, we can find $\sin A$ and $\sin B$.

$\sin A=\frac{h}{b}$ $\sin B=\frac{h}{a}$ $b \sin A=h \quad a \sin B=h$	Definition of sine
$b \sin A$ $=a \sin B$ $\frac{\sin A}{a}=\frac{\sin B}{b}$ Cross products Substitution Divide each side by $a b$. .	

The proof can be completed by using a similar technique with the other altitudes to show that $\frac{\sin A}{a}=\frac{\sin C}{c}$ and $\frac{\sin B}{b}=\frac{\sin C}{c}$.

$$
\text { to show that } \frac{a}{c}=\frac{1}{c} \text { and } \frac{b}{c}=\frac{}{c} \text {. }
$$

1 Focus

5-Minute Check
 Transparency 7-6 Use as a

 quiz or review of Lesson 7-5.Mathematical Background notes are available for this lesson on p. 340D.

How
 are triangles used in radio astronomy?

Ask students:

- Why is it called radio astronomy? because they are analyzing radio signals
- What are some examples of astronomical objects? Sample answers: stars, planets, quasars, brown dwaris, galaxies

Resource Manager

Workbook and Reproducible Masters

Chapter 7 Resource Masters

- Study Guide and Intervention, pp. 381-382

Graphing Calculator and
Computer Masters, p. 30

- Skills Practice, p. 383
- Practice, p. 384
- Reading to Learn Mathematics, p. 385
- Enrichment, p. 386
- Assessment, p. 408

Transparencies

5-Minute Check Transparency 7-6
Answer Key Transparencies

- Technology

Interactive Chalkboard
Multimedia Applications: Virtual Activities

2 Teach

THE LAW OF SINES

In-Class Examples

a. Find p. Round to the nearest tenth.

4.8
b. Find $m \angle L$ to the nearest degree in $\triangle L M N$ if $n=7$, $\ell=9$, and $m \angle N=43$. 61

Teaching Tip To save a step, students can also write $a \sin B=b \sin A$ and then substitute values to solve.
a. Solve $\triangle D E F$ if $m \angle D=112$, $m \angle F=8$, and $f=2$. $d \approx 13.2 ; e \approx 12.4 ;$ $m \angle E=60$
b. Solve $\triangle I J K$ if $m \angle J=32$, $i=30$, and $j=16$.
$k \approx 27.3 ; m \angle I \approx 83.5$;
$m \angle K \approx 64.5$

Example 1 Use the Law of Sines

a. Find b. Round to the nearest tenth.

Use the Law of Sines to write a proportion.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { Law of Sines } \\
\frac{\sin 37^{\circ}}{3} & =\frac{\sin 68^{\circ}}{b} & & m \angle A=37, a=3, m \angle B=68 \\
b \sin 37^{\circ} & =3 \sin 68^{\circ} & & \text { Cross products } \\
b & =\frac{3 \sin 68^{\circ}}{\sin 37^{\circ}} & & \text { Divide each side by } \sin 37^{\circ} . \\
b & \approx 4.6 & & \text { Use a calculator. }
\end{aligned}
$$

b. Find $m \angle Z$ to the nearest degree in $\triangle X Y Z$ if $y=17, z=14$, and $m \angle Y=92$.

Write a proportion relating $\angle Y, \angle Z, y$, and z.

$$
\begin{array}{rlrl}
\frac{\sin Y}{y} & =\frac{\sin Z}{z} & & \text { Law of Sines } \\
\frac{\sin 92^{\circ}}{17} & =\frac{\sin Z}{14} & & m \angle Y=92, y=17, z=14 \\
14 \sin 92^{\circ} & =17 \sin Z & & \text { Cross products } \\
\frac{14 \sin 92^{\circ}}{17} & =\sin Z & & \text { Divide each side by } 17 . \\
\sin ^{-1}\left(\frac{14 \sin 92^{\circ}}{17}\right) & =Z & & \text { Solve for } Z . \\
55^{\circ} & \approx Z & & \text { Use a calculator. } \\
\text { So }, m \angle Z \approx 55 . & &
\end{array}
$$

The Law of Sines can be used to solve a triangle. Solving a triangle means finding the measures of all of the angles and sides of a triangle.

Example 2 Solve Triangles

a. Solve $\triangle A B C$ if $m \angle A=33, m \angle B=47$, and $b=14$. Round angle measures to the nearest degree and side measures to the nearest tenth.
We know the measures of two angles of the triangle. Use the Angle Sum Theorem to find $m \angle C$.

$$
\begin{aligned}
m \angle A+m \angle B+m \angle C & =180 \quad \text { Angle Sum Theorem } \\
33+47+m \angle C & =180 \quad m \angle A=33, m \angle B=47 \\
80+m \angle C & =180 \quad \text { Add. } \\
m \angle C & =100 \quad \text { Subtract } 80 \text { from each side. }
\end{aligned}
$$

Since we know $m \angle B$ and b, use proportions involving $\frac{\sin B}{b}$.

$$
\begin{array}{rlr}
\text { To find } a \text { : } & \\
\frac{\sin B}{b} & =\frac{\sin A}{a} & \text { Law of Sines } \\
\frac{\sin 47^{\circ}}{14} & =\frac{\sin 33^{\circ}}{a} & \text { Substitute. } \\
a \sin 47^{\circ} & =14 \sin 33^{\circ} & \text { Cross products } \\
a & =\frac{14 \sin 33^{\circ}}{\sin 47^{\circ}} & \text { Divide each side by } \sin 47^{\circ} . \\
a & \approx 10.4 & \text { Use a calculator. }
\end{array}
$$

$$
\begin{gathered}
\text { To find } c: \\
\frac{\sin B}{b}=\frac{\sin C}{c} \\
\frac{\sin 47^{\circ}}{14}=\frac{\sin 100^{\circ}}{c} \\
c \sin 47^{\circ}=14 \sin 100^{\circ} \\
c=\frac{14 \sin 100^{\circ}}{\sin 47^{\circ}} \\
c
\end{gathered}
$$

Therefore, $m \angle C=100, a \approx 10.4$, and $c \approx 18.9$.
b. Solve $\triangle A B C$ if $m \angle C=98, b=14$, and $c=20$. Round angle measures to the nearest degree and side measures to the nearest tenth.
We know the measures of two sides and an angle opposite one of the sides.

$\frac{\sin B}{b}$	$=\frac{\sin C}{c}$		Law of Sines
$\frac{\sin B}{14}$	$=\frac{\sin 98^{\circ}}{20}$		$m \angle C=98, b=14$, and $c=20$
$20 \sin B$	$=14 \sin 98^{\circ}$		Cross products
$\sin B$	$=\frac{14 \sin 98^{\circ}}{20}$		Divide each side by 20.
B	$=\sin ^{-1}\left(\frac{14 \sin 98^{\circ}}{20}\right)$		Solve for B.
B	$\approx 44^{\circ}$		Use a calculator.
$m \angle A+m \angle B+m \angle C=180$		Angle Sum Theorem	
$m \angle A$	$+44+98=180$	$m \angle B=44$ and $m \angle C=98$	
$m \angle A+142=180$		Add.	
$m \angle A=38$		Subtract 142 from each side.	
$\frac{\sin A}{a}$	$=\frac{\sin C}{c}$		Law of Sines
$\frac{\sin 38^{\circ}}{a}$	$=\frac{\sin 98^{\circ}}{20}$		$m \angle A=38, m \angle C=98$, and $c=20$
$20 \sin 38^{\circ}$	$=a \sin 98^{\circ}$		Cross products
$\frac{20 \sin 38^{\circ}}{\sin 98^{\circ}}$	$=a$		Divide each side by sin 98°.
12.4	$\approx a$		Use a calculator.

Therefore, $A \approx 38^{\circ}, B \approx 44^{\circ}$, and $a \approx 12.4$.

USE THE LAW OF SINES TO SOLVE PROBLEMS The Law of Sines is very useful in solving direct and indirect measurement applications.

Example 3 Indirect Measurement

When the angle of elevation to the sun is 62°, a telephone pole tilted at an angle of 7° from the vertical casts a shadow of 30 feet long on the ground. Find the length of the telephone pole to the nearest tenth of a foot.

Draw a diagram.
Draw $\overline{S D} \perp \overline{G D}$. Then find the $m \angle G D P$ and $m \angle G P D$.
$m \angle G D P=90-7$ or 83
$m \angle G P D+62+83=180$ or $m \angle G P D=35$
Since you know the measures of two angles of the triangle, $m \angle G D P$ and $m \angle G P D$, and the length of a side opposite one of the angles ($\overline{G D}$ is opposite $\angle G P D)$ you can use the Law of Sines to find the length of the pole.

(continued on the next page)
www.geometryonline.com/extra_examples

USE THE LAW OF SINES TO SOLVE PROBLEMS

In-Class Examples

Power

Point ${ }^{\circledR}$
3 In Example 3, what happens to the length of the shadow later in the day when the angle of elevation decreases to 33° ? Assume that the length and position of the telephone pole are still the same. The length of the shadow increases to about 76.2 feet.

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for
Chapter 7.
- include one completely worked example similar to Example 2 on pp. 378-379.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION

FIND THE ERROR
Explain that if $\angle F$ in the figure had been 90°, then Makayla and Felipe would have found the same value for d. Students should recognize that they could use the Law of Sines to solve right triangles, but trigonometric ratios are more efficient.

About the Exercises...

Organization by Objective

- The Law of Sines: 16-29
- Use the Law of Sines to Solve Problems: 30-38
Odd/Even Assignments
Exercises 16-38 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 17-39 odd, 40-58
Average: 17-39 odd, 40-58
Advanced: 16-40 even, 41-52
(optional: 53-58)
All: Quiz 2 (1-5)

$$
\begin{aligned}
\frac{P D}{\sin \angle D G P} & =\frac{G D}{\sin \angle G P D} & & \text { Law of Sines } \\
\frac{P D}{\sin 62^{\circ}} & =\frac{30}{\sin 35^{\circ}} & & m \angle D G P=62, m \angle G P D=35, \text { and } G D=30 \\
P D \sin 35^{\circ} & =30 \sin 62^{\circ} & & \text { Cross products } \\
P D & =\frac{30 \sin 62^{\circ}}{\sin 35^{\circ}} & & \text { Divide each side by } \sin 35^{\circ} . \\
P D & \approx 46.2 & & \text { Use a calculator. }
\end{aligned}
$$

The telephone pole is about 46.2 feet long.

Concept Summary

Law of Sines

The Law of Sines can be used to solve a triangle in the following cases.
Case 1 You know the measures of two angles and any side of a triangle. (AAS or ASA)
Case 2 You know the measures of two sides and an angle opposite one of these sides of the triangle. (SSA)

Check for Understanding

Concept Check

1. Felipe; Makayla is using the definition of the sine ratio for a right triangle, but this is not a right triangle.
Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4-7$	1
$8-13$	2
14	3

8. $m \angle P=55$,
$q \approx 75.3, r \approx 80.3$
9. $m \angle R \approx 19$, $m \angle Q \approx 56, q \approx 27.5$
10. $m \angle Q=89$,
$p \approx 12.0, r \approx 18.7$
11. $m \angle Q \approx 43$,
$m \angle R \approx 17, r \approx 9.5$
12. FIND THE ERROR Makayla and Felipe are trying to find d in $\triangle D E F$.

$$
\begin{array}{cc}
\text { Makayla } & \text { Felipe } \\
\sin 59^{\circ}=\frac{d}{12} & \frac{\sin 59^{\circ}}{d}=\frac{\sin 48^{\circ}}{12}
\end{array}
$$

Who is correct? Explain your reasoning.
2. OPEN ENDED Draw an acute triangle and label the measures of two angles and the length of one side. Explain how to solve the triangle.
3. Compare the two cases for the Law of Sines. 2-3. See margin.

Find each measure using the given measures of $\triangle X Y Z$. Round angle measures to the nearest degree and side measures to the nearest tenth.
4. Find y if $x=3, m \angle X=37$, and $m \angle Y=68.4 .6$
5. Find x if $y=12.1, m \angle X=57$, and $m \angle Z=72.13 .1$
6. Find $m \angle Y$ if $y=7, z=11$, and $m \angle Z=37$. 23
7. Find $m \angle Z$ if $y=17, z=14$, and $m \angle Y=92$. 55

Solve each $\triangle P Q R$ described below. Round angle measures to the nearest degree and side measures to the nearest tenth.
8. $m \angle R=66, m \angle Q=59, p=72 \quad$ 9. $p=32, r=11, m \angle P=105$
10. $m \angle P=33, m \angle R=58, q=22$
12. $m \angle P=50, m \angle Q=65, p=12$ $m \angle R=65, q \approx 14.2, r \approx 14.2$
14. Find the perimeter of parallelogram $A B C D$ to the nearest tenth. 34.6 units
11. $p=28, q=22, m \angle P=120$
13. $q=17.2, r=9.8, m \angle Q=110.7$

380 Chapter 7 Right Triangles and Trigonometry

Answer

2. Sample answer: Let $m \angle D=65, m \angle E=73$, and $d=15$. Then $\frac{\sin 65^{\circ}}{15}$ is the fixed ratio or scale factor for the Law of Sines extended proportion. The length of e is found by using $\frac{\sin 65^{\circ}}{15}=\frac{\sin 73^{\circ}}{e}$. The $m \angle F$ is found by evaluating $180-(m \angle D+m \angle E)$. In this problem $m \angle F=42$. The length of f is found by using $\frac{\sin 65^{\circ}}{15}=\frac{\sin 42^{\circ}}{f}$.

Application 15. SURVEYING To find the distance between two points A and B that are on opposite sides of a river, a surveyor measures the distance to point C on the same side of the river as point A The distance from A to C is 240 feet. He then measures the angle from A to B as 62° and measures the angle from C to B as 55°. Find the distance from A to B. about 237.8 ft

Practice and Apply

Homerwork Help	
$\underset{\text { Exercises }}{\substack{\text { For }}}$	$\begin{gathered} \text { See } \\ \text { Examples } \end{gathered}$
16-21	1
22-29	2
30-38	3
Extra Practice See page 768 .	

22. $m \angle W=68$,
$w \approx 7.3, x \approx 5.1$
23. $m \angle X \approx 25.6$,
$m \angle W \approx 58.4$,
$w \approx 20.3$
24. $m \angle Y=103$,
$w \approx 12.6, x \approx 6.8$
25. $m \angle X \approx 19.3$,
$m \angle W \approx 48.7$,
$w \approx 45.4$
26. $m \angle X=27$,
$x \approx 6.3, y \approx 12.5$
27. $m \angle X=82$,
$x \approx 5.2, y \approx 4.7$
28. $m \angle Y \approx 17.6$, $m \angle X \approx 55.4$, $x \approx 25.8$
29. $m \angle X \approx 49.6$,
$m \angle Y \approx 42.4$,
$y \approx 14.2$
Find each measure using the given measures of $\triangle K L M$. Round angle measures to the nearest degree and side measures to the nearest tenth.
30. If $m \angle L=45, m \angle K=63$, and $\ell=22$, find k. 27.7
31. If $k=3.2, m \angle L=52$, and $m \angle K=70$, find $\ell .2 .7$
32. If $m=10.5, k=18.2$, and $m \angle K=73$, find $m \angle M$. 33
33. If $k=10, m=4.8$, and $m \angle K=96$, find $m \angle M$. 29
34. If $m \angle L=88, m \angle K=31$, and $m=5.4$, find $\ell .6 .2$
35. If $m \angle M=59, \ell=8.3$, and $m=14.8$, find $m \angle L$. 29

Solve each $\triangle W X Y$ described below. Round measures to the nearest tenth.

22. $m \angle Y=71, y=7.4, m \angle X=41$
23. $x=10.3, y=23.7, m \angle Y=96$
24. $m \angle X=25, m \angle W=52, y=15.6$
25. $m \angle Y=112, x=20, y=56$
26. $m \angle W=38, m \angle Y=115, w=8.5$
27. $m \angle W=36, m \angle Y=62, w=3.1$
28. $w=30, y=9.5, m \angle W=107$
29. $x=16, w=21, m \angle W=88$
30. An isosceles triangle has a base of 46 centimeters and a vertex angle of 44° Find the perimeter. about 168.8 cm
31. Find the perimeter of quadrilateral $A B C D$ to the nearest tenth. 56.9 units

32. GARDENING Elena is planning a triangular garden. She wants to build a fence around the garden to keep out the deer. The length of one side of the garden is 26 feet. If the angles at the end of this side are 78° and 44°, find the length of fence needed to enclose the garden. about 77.3 ft
33. AVIATION Two radar stations that are 20 miles apart located a plane at the same time. The first station indicated that the position of the plane made an angle of 43° with the line between the stations. The second station indicated
that it made an angle of 48° with the same line. How far is each station from the plane? about 14.9 mi , about 13.6 mi
34. SURVEYING Maria Lopez is a surveyor who must determine the distance across a section of the Rio Grande Gorge in New Mexico. Standing on one side of the ridge, she measures the angle formed by the edge of the ridge and the line of sight to a tree on the other side of the ridge. She then walks along the ridge 315 feet, passing the tree and measures the angle formed by the edge of the ridge and the new line of sight to the same tree. If the first angle is 80° and the second angle is 85°, find the distance across the gorge. about 1194 ft

Lesson 7-6 The Law of Sines 381

Answers (page 380)

3. In one case you need the measures of two sides and the measure of an angle opposite one of the sides. In the other case you need the measures of two angles and the measure of a side.

Enrichment, p. 386

Identities
An identity is an equation that is true for all values of the
variable for which both sides are defined. One way to verify variable for which both sides are defined One way yos verify
an identity is to use a right triangle and the definitions for trigonometric functions.

Examplei

\qquad
 C is an identity. $\begin{aligned}(\sin A)^{2}+(\cos A)^{2} & =\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2} \\ & =\frac{a^{2}+b^{2}}{c^{2}}=\frac{c^{2}}{c}=\end{aligned}$ To check whether an equation may be an identity, you can test
seevera values. However. since oyu cannot tesst all values, you
cannot be ertain that the equation is an identity several values. However, since you cannot test all
cannot be certain that the equation is an identity

Study Guide and Intervention, p. 381 (shown) and p. 382

The Law of Sines In any triangle, there is a special rel the triangle and the lengths of the sides opposite the angles.

\section*{| Lav ot sines | $\frac{\sin A}{A}=\frac{\sin B}{b}=\frac{\sin C}{c}$ |
| :---: | :---: | :---: | :---: |}

Skils Practice, P. 383 and Practice, P. 384 (shown)

Find each measure using the given measures from $\triangle E F G$. Round angl to the nearest tenth degree and side measures to the nearest tenth.

1. If $m \angle G=14, m \angle E=67$, and $e=14$, find g. 3.7
2. If $e=12.7, m \angle E=42$, and $m \angle F=61$, find f. 16.6
3. If $g=14, f=5.8$, and $m \angle G=83$, find $m \angle F$. 24.3
4. If $e=19.1, m \angle G=34$, and $m \angle E=56$, find g. 12.9
5. If $f=9.6, g=27.4$, and $m \angle G=43$, find $m \angle F$. 13.8

Solve each $\triangle S T U$ described below. Round measures to the nearest tenth
6. $m \angle T=85, s=4.3, t=8.2 m \angle S \approx 31.5, m \angle U \approx 63.5, u \approx 7.4$
7. $s=40, u=12, m \angle S=37 m \angle T \approx 132.6, m \angle U \approx 10.4, t \approx 48.9$
8. $m \angle U=37, t=2.3, m \angle T=17 m \angle S \approx 126, s \approx 6.4, u \approx 4.7$

据
$t=28.4, u=21.7, m \angle T=66 m \angle S \approx 69.7, m \angle U \approx 44.3, s \approx 29.2$
11. $m \angle S=89, s=15.3, t=14 m \angle T \approx 66.2, m \angle U \approx 24.8, u \approx 6.4$
12. $m \angle T=98, m \angle U=74, u=9.6 m \angle S \approx 8, s \approx 1.4, t \approx 9.9$

of the lake to the tree on the is find the distance from the edge
triangular configuration as shown in the diagram. The distance
trom location A to ocatation B is 85 meters. The measures of the
fondes A the A and B are 51° nd 85°. angles at A and B are 51° and 83°, respectively. What is the dist
from the edge of the lake at B to the tree on the island at C ? about 91.8 m

Reading to Learn

Mathematics, p. 385

ELL
Pre-Activity How are triangles used in radio astronomy?
Read the introduction to Lesson 7.6 at the top of page 377 in your textbook.
Why might several antennas be better than one single antenna when
studying distant objects? Sample answer: Observing an object studying distant objects? Sample answer: ODserving an object
from only one position otten does not provide enough
information to caiculate things such as the distance from the information to calculate
observer to the object.

Reading the Lesson

1. Refer to the figure. According to the Law of Sines, which of the
following are correct statements? A, F
$\begin{array}{ll}\text { A. } \frac{m}{\sin M}=\frac{n}{\sin N}=\frac{p}{\sin P} & \text { B. } \frac{\sin m}{M}=\frac{\sin n}{N}=\frac{\sin p}{P}\end{array}$
C. $\frac{\cos M}{m}=\frac{\cos N}{n}=\frac{\cos P}{p} \quad$ D. $\frac{\sin M}{m}+\frac{\sin N}{n}=\frac{\sin P}{p}$
E. $(\sin M)^{2}+(\sin N)^{2}=(\sin P)^{2} \quad$ F. $\frac{\sin P}{p}=\frac{\sin M}{m}=\frac{\sin N}{n}$

2. State whethe

a. The Law of Sines applies to all triangles. true
b. The Pythagorean Theorem a applies to all tria
only applies to right triangles.
angles, you can use the Law of Sines to find the lengths of the other two sides. true
d. If you know the measures of two angles of a triangle, you should use the Law of Sines
to find the measure of the third angle. False; sample answer: You should use the Angle Sum Theorem.
e. A friend tells you that in triangle $R S T, m \angle R=132, r=24$ centimeters, and $s=31$ sample answer: In ann triangle, the longest side is opposite the largest
angle. Because a triangle can have only one obtuse angle, $\angle R$ must be angle. Because a triangle can have only one obtuse angle, $\angle R$ must be
the largest angle but $s>r$ so the largest angle, but
the given measures.

Helping You Remember
3. Many students remember mathematical equations and formulas better if they can state
them in words. State the Law of Sines in your own words without using variables or hem in words. State the Law of Sines in your own words without using variables or
mathematical symbols. Sample answer: In any triangle, the ratio of the sine of an angle to the
length of the opposite side is the same for all three angles.

Answers

40. Yes; in right $\triangle A B C \frac{\sin A}{a}=\frac{\sin C}{c}$ where C is the right angle, $\sin A=\frac{a \sin C}{c}$. Since $m \angle C=90$, then $\sin A=\frac{a \sin 90^{\circ}}{c}$. Since the $\sin 90^{\circ}=1$, then $\sin A=\frac{a}{c}$, which is the definition of the sine ratio.
41. Sample answer: Triangles are used to determine distances in space. Answers should include the following.

- The VLA is one of the world's premier astronomical radio observatories. It is used to make pictures from the radio waves emitted by astronomical objects.
- Triangles are used in the construction of the antennas.

More About.

Aviation

From January 2001 to May 2001, Polly Vacher flew over 29,000 miles to become the first woman to fly the smallest single-engined aircraft around the world via Australia and the Pacific. Source: wmw.worldwings.org

Standardized Test Practice (A) (B) (C) D
35. REAL ESTATE A house is built on a triangular plot of land. Two sides of the plot are 160 feet long, and they meet at an angle of 85°. If a fence is to be placed along the perimeter of the property, how much fencing material is needed? about 536 ft

MIRRORS For Exercises 36 and 37, use the following information.
Kayla, Jenna, and Paige live in a town nicknamed "Perpendicular City" because the planners and builders took great care to have all the streets oriented north-south or east-west. The three of them play a game where they signal each other using mirrors. Kayla and Jenna signal each other from a distance of 1433 meters. Jenna turns 27° to signal Paige. Kayla rotates 40° to signal Paige.
36. To the nearest tenth of a meter, how far apart are Kayla and Paige? about 706.8 m
37. To the nearest tenth of a meter, how far apart are Jenna and Paige? about 1000.7 m

AVIATION For Exercises 38 and 39, use the following information.
Keisha Jefferson is flying a small plane due west. To avoid the jet stream, she must change her course. She turns the plane 27° to the south and flies 60 miles. Then she makes a turn of 124° heads back
 to her original course. 38. about 56.2 mi
38. How far must she fly after the second turn to return to the original course?
39. How many miles did she add to the flight by changing course? about 13.6 mi
40. CRITICAL THINKING Does the Law of Sines apply to the acute angles of a right triangle? Explain your answer. See margin.
41. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How are triangles used in radio astronomy?
Include the following in your answer:

- a description of what the VLA is and the purpose of the VLA, and
- the purpose of the triangles in the VLA.

42. SHORT RESPONSE In $\triangle X Y Z$, if $x=12, m \angle X=48$, and $m \angle Y=112$, solve the triangle to the nearest tenth. $m \angle Z=20, y=15.0$, and $z=5.5$
43. ALGEBRA The table below shows the customer ratings of five restaurants in the Metro City Guide to Restaurants. The rating scale is from 1, the worst, to 10, the best. Which of the five restaurants has the best average rating? A

Restaurant	Food	Decor	Service	Value
Del Blanco's	7	9	4	7
Aquavent	8	9	4	6
Le Circus	10	8	3	5
Sushi Mambo	7	7	5	6
Metropolis Grill	9	8	7	7

(A) Metropolis Grill
(C) Aquavent
(B) Le Circus
(D) Del Blanco's

Maintain Your Skills

Mixed Review ARCHITECTURE For Exercises 44 and 45, use the

 following information.Mr. Martinez is an architect who designs houses so that the windows receive minimum sun in the summer and maximum sun in the winter. For Columbus, Ohio, the angle of elevation of the sun at noon on the longest day is 73.5° and on the shortest day is 26.5°. Suppose a house is designed with a south-facing window that is 6 feet tall. The top of the window is to be installed 1 foot below the overhang. (Lesson 7-5)
44. How long should the architect make the overhang so that the window gets no direct sunlight at noon on the longest day? about 2.07 ft
45. Using the overhang from Exercise 44, how much of the window will get direct sunlight at noon on the shortest day? about 5.97 ft

Use $\triangle J K L$ to find $\sin J, \cos J, \tan J, \sin L, \cos L$, and $\tan L$. Express each ratio as a fraction and as a decimal to the nearest hundredth. (Lesson 7-4) 46-49. See margin.

46. $j=8, k=17, \ell=15$
47. $j=20, k=29, \ell=21$
48. $j=12, k=24, \ell=12 \sqrt{3}$
49. $j=7 \sqrt{2}, k=14, \ell=7 \sqrt{2}$

If $\overline{K H}$ is parallel to $\overline{J I}$, find the measure of each angle. (Lesson 4-2)
50. $\angle 1 \quad 66$
51. $\angle 2 \quad 54$
52. $\angle 3 \quad 90$

Getting Ready for PREREQUISITE SKILL Evaluate $\frac{c^{2}-a^{2}-b^{2}}{-2 a b}$ for the given values of a, b, and c. the Next Lesson (To review evaluating expressions, see page 736.) 53. $\frac{13}{112} \quad 54 . \frac{61}{72} \quad 55 .-\frac{11}{80}$
53. $a=7, b=8, c=10$
54. $a=4, b=9, c=6$
55. $a=5, b=8, c=10$
56. $a=16, b=4, c=13$
103
128
57. $a=3, b=10, c=9$
58. $a=5, b=7, c=11$
$\frac{7}{15}$
$-\frac{47}{70}$

Practice Quiz 2

Lessons 7-4 through 7-6
Find x to the nearest tenth. (Lesson 7-4)
1.

58.0
2.

3.

4. COMMUNICATIONS To secure a 500 -foot radio tower against high winds, guy wires are attached to the tower 5 feet from the top. The wires form a 15° angle with the tower. Find the distance from the centerline of the tower to the anchor point of the wires. (Lesson 7-5) 132.6 ft
5. Solve $\triangle D E F$.
(Lesson 7-6)
$m \angle D \approx 41$
$m \angle E \approx 57$
$e \approx 10.2$

Answers

46. $\frac{8}{17} \approx 0.47 ; \frac{15}{17} \approx 0.88 ; \frac{8}{15} \approx 0.53 ; \frac{15}{17} \approx 0.88 ; \frac{8}{17} \approx 0.47 ; \frac{15}{8} \approx 1.88$
47. $\frac{20}{29} \approx 0.69 ; \frac{21}{29} \approx 0.72 ; \frac{20}{21} \approx 0.95 ; \frac{21}{29} \approx 0.72 ; \frac{20}{29} \approx 0.69 ; \frac{21}{20}=1.05$
48. $\frac{1}{2}=0.50 ; \frac{\sqrt{3}}{2} \approx 0.87 ; \frac{\sqrt{3}}{3} \approx 0.58 ; \frac{\sqrt{3}}{2} \approx 0.87 ; \frac{1}{2}=0.50 ; \sqrt{3} \approx 1.73$
49. $\frac{\sqrt{2}}{2} \approx 0.71 ; \frac{\sqrt{2}}{2} \approx 0.71 ; 1.00 ; \frac{\sqrt{2}}{2} \approx 0.71 ; \frac{\sqrt{2}}{2} \approx 0.71 ; 1.00$

4 Assess

Open-Ended Assessment

Writing Ask students to draw three triangular figures on a single sheet of paper and label and assign values to them in correspondence with the three types of triangles that can be solved using the Law of Sines (AAS, ASA and SSA). For example, one triangle would have two angle measures, one adjacent side measure and one adjacent side variable. Students can use the examples in the book if necessary. Then tell them to set up the appropriate proportions to find the unknown values.

Getting Ready for Lesson 7-7

Prerequisite Skill Students will learn about the Law of Cosines in Lesson 7-7. They will solve problems using multivariable equations. Use Exercises 53-58 to determine your students' familiarity with evaluating multivariable expressions.

Assessment Options

Practice Quiz 2 This quiz provides students with a brief review of the concepts and skills in Lessons 7-4 through 7-6. Lesson numbers are given to the right of the exercises or instruction lines so students can review concepts not yet mastered.
Quiz (Lessons 7-5 and 7-6) is available on p. 408 of the Chapter 7 Resource Masters.

Geometry
Software
Investigation

A Follow-Up of Lesson 7-6

Geting Started

The Ambiguous Case of the

 Law of Sines As a variation, students can label the points D_{1} and D_{2} where the circle intersects $\overrightarrow{A D}$ and construct two radii $\overline{B D}_{1}$ and $\overline{B D}_{2}$. Then they can find and display all of the measures on the screen at one time.
Teach

- When students are comparing results, point out that the two possible measures for angle D are supplementary, and discuss why this is the case.
- Explain to students that if circle B intersects $\overrightarrow{A C}$ at just one point, then $\overrightarrow{A C}$ is tangent to circle B, and $\triangle A B D$ is a right triangle with right angle D.
- If students become concerned about the possibility of finding two solutions for a SSA problem, assure them that the problems will either be designed to yield one answer or set up in a way so students will know which solution is appropriate. Sometimes it might be appropriate for students to find both solutions.

Assess

Exercises 1-5 After working through the exercises, students will have demonstrated numerous examples of the ambiguous case of the Law of Sines and discussed the possibilities of finding one solution or no solution.

The Ambiguous Case of the Law of Sines

In Lesson 7-6, you learned that you could solve a triangle using the Law of Sines if you know the measures of two angles and any side of the triangle (AAS or ASA). You can also solve a triangle by the Law of Sines if you know the measures of two sides and an angle opposite one of the sides (SSA). When you use SSA to solve a triangle, and the given angle is acute, sometimes it is possible to find two different triangles. You can use The Geometer's Sketchpad to explore this case, called the ambiguous case, of the Law of Sines.

Model

Construct $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Construct a circle whose center is B so that it intersects $\overrightarrow{A C}$ at two points. Then, construct any radius $B D$.
Step 2 Find the measures of $\overline{B D}, \overline{A B}$, and $\angle A$.
Step 3 Use the rotate tool to move D so that it lies on one of the intersection points of circle B and $\overrightarrow{A C}$. In $\triangle A B D$, find the measures of $\angle A B D, \angle B D A$, and $\overline{A D}$.

Step 4 Using the rotate tool, move D to the other intersection point of circle B and $\overrightarrow{A C}$.

Step 5 Note the measures of $\angle A B D$, $\angle B D A$, and $\overline{A D}$ in $\triangle A B D$.

Analyze

1. Which measures are the same in both triangles? $B D, A B, m \angle A$
2. Repeat the activity using different measures for $\angle A, \overline{B D}$, and $\overline{A B}$. How do the results compare to the earlier results? Sample answer: There are two different triangles.
Make a Conjecture 3-5. See margin.
3. Compare your results with those of your classmates. How do the results compare?
4. What would have to be true about circle B in order for there to be one unique solution? Test your conjecture by repeating the activity.
5. Is it possible, given the measures of $\overline{B D}, \overline{A B}$, and $\angle A$, to have no solution? Test your conjecture and explain.

Answers

3. Sample answer: The results are the same. In each case, two triangles are possible.
4. Sample answer: Circle B intersects $\overrightarrow{A C}$ at only one point. See students' work.
5. Yes; sample answer: There is no solution if circle B does not intersect $\overrightarrow{A C}$.

What Youll Learn

- Use the Law of Cosines to solve triangles.
- Solve problems by using the Law of Cosines.

Vocabulary
- Law of Cosines

Study Tip

Side and Angle Note that the letter of the side length on the eft-hand side of each equation corresponds to the angle measure used with the cosine.

How are triangles used in building design?

The Chicago Metropolitan Correctional Center is a 27-story triangular federal detention center. The cells are arranged around a lounge-like common area. The architect found that a triangular floor plan allowed for the maximum number of cells to be most efficiently centered around the lounge. us to solve a triangle when the Law of Sines cannot be used.

Key Concept

Let $\triangle A B C$ be any triangle with a, b and c representing the measures of sides opposite angles A, B, and C, respectively. Then the following equations are true.
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

THE LAW OF COSINES Suppose you know the lengths of the sides of the triangular building and want to solve the triangle. The Law of Cosines allows

Law of Cosines
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

The Law of Cosines can be used to find missing measures in a triangle if you know the measures of two sides and their included angle.

Example 1 Two Sides and the Included Angle

Find a if $c=8, b=10$, and $m \angle A=60$.
Use the Law of Cosines since the measures of two sides and the included are known.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A & & \text { Law of Cosines } \\
a^{2} & =10^{2}+8^{2}-2(10)(8) \cos 60^{\circ} & & b=10, c=8, \text { and } m \angle A=60 \\
a^{2} & =164-160 \cos 60^{\circ} & & \text { Simplify. } \\
a & =\sqrt{164-160 \cos 60^{\circ}} & & \text { Take the square root of each side. } \\
a & \approx 9.2 & & \text { Use a calculator. }
\end{aligned}
$$

7-7
 Lesson Notes

1 Focus

5-Minute Check
Transparency 7-7 Use as a quiz or review of Lesson 7-6.

Mathematical Background notes are available for this lesson on p. 340D.

How
 are triangles used in building design?

Ask students:

- What advantages might the triangular design offer the correction center employees? The residents would be more confined and easier to monitor.
- How might the triangular design of the correction facility be more cost efficient? A triangular building may utilize less space than a rectangular one, so fewer materials would be needed, and the building could have more compact electrical and plumbing systems.

Workbook and Reproducible Masters

Chapter 7 Resource Masters

- Study Guide and Intervention, pp. 387-388
- Skills Practice, p. 389
- Practice, p. 390
- Reading to Learn Mathematics, p. 391
- Enrichment, p. 392
- Assessment, p. 408

Prerequisite Skills Workbook, pp. 21-22, 25-26
Teaching Geometry With Manipulatives Masters, p. 121

Resource Manager

Transparencies

5-Minute Check Transparency 7-7
Answer Key Transparencies
Technology
GeomPASS: Tutorial Plus, Lesson 16
Interactive Chalkboard

2 Teach

THE LAW OF COSINES

In-Class Examples

1 Find x if $y=11, z=25$, and $m \angle X=45$.

Teaching Tip In Example 2, show students how the Law of Cosines can be rewritten to provide an alternate form:
$\cos R=\frac{q^{2}+s^{2}-r^{2}}{2 q s}$.
Find $m \angle L$.

USE THE LAW OF COSINES TO SOLVE PROBLEMS

In-Class Example

Power Point ${ }^{\circledR}$

Teaching Tip In Example 3, students can store the actual value of k in their calculators. Then if they use the stored value to find L, they will get 79.19. Advise students that answers will vary when using rounded values instead of more exact values.

3 Determine whether the Law of Sines or the Law of Cosines should be used first to solve $\triangle D E F$. Then solve $\triangle D E F$. Round angle measures to the nearest degree and side measures to the nearest tenth.

Cosines, $f \approx 46.9 ; m \angle D \approx 23$; $m \angle E \approx 12$

You can also use the Law of Cosines to find the measures of angles of a triangle when you know the measures of the three sides.

Example 2 Three Sides

Find $m \angle R$.

$$
\begin{aligned}
r^{2} & =q^{2}+s^{2}-2 q s \cos R & & \text { Law of Cosines } \\
23^{2} & =37^{2}+18^{2}-2(37)(18) \cos R & & r=23, q=37, s=18 \\
529 & =1693-1332 \cos R & & \text { Simplify. } \\
-1164 & =-1332 \cos R & & \text { Subtract } 1693 \text { from each side. } \\
\frac{-1164}{-1332} & =\cos R & & \text { Divide each side by }-1332 . \\
R & =\cos ^{-1}\left(\frac{1164}{1332}\right) & & \text { Solve for } R . \\
R & \approx 29.1^{\circ} & & \text { Use a calculator. }
\end{aligned}
$$

USE THE LAW OF COSINES TO SOLVE PROBLEMS Most problems can be solved using more than one method. Choosing the most efficient way to solve a problem is sometimes not obvious.
When solving right triangles, you can use sine, cosine, or tangent ratios. When solving other triangles, you can use the Law of Sines or the Law of Cosines. You must decide how to solve each problem depending on the given information.

Example 3 Select a Strategy

Solve $\triangle K L M$. Round angle measure to the nearest degree and side measure to the nearest tenth.
We do not know whether $\triangle K L M$ is a right triangle, so we must use the Law of Cosines or the Law of Sines. We know the measures of two sides and the
 included angle. This is SAS, so use the Law of Cosines.

$$
\begin{aligned}
k^{2} & =\ell^{2}+m^{2}-2 \ell m \cos K & & \text { Law of Cosines } \\
k^{2} & =18^{2}+14^{2}-2(18)(14) \cos 51^{\circ} & & \ell=18, m=14, \text { and } m \angle K=51 \\
k & =\sqrt{18^{2}+14^{2}-2(18)(14) \cos 51^{\circ}} & & \text { Take the square root of each side. } \\
k & \approx 14.2 & & \text { Use a calculator. }
\end{aligned}
$$

Next, we can find $m \angle L$ or $m \angle M$. If we decide to find $m \angle L$, we can use either the Law of Sines or the Law of Cosines to find this value. In this case, we will use the Law of Sines.

TEACHING TIP

Help students learn that when using a calculator, they can skip some steps. For example,
$L=\sin ^{-1}\left(\frac{18 \sin 51^{\circ}}{14.2}\right)$

$$
\begin{aligned}
\frac{\sin L}{\ell} & =\frac{\sin K}{k} & & \text { Law of Sines } \\
\frac{\sin L}{18} & \approx \frac{\sin 51^{\circ}}{14.2} & & \ell=18, k \approx 14.2, \text { and } m \angle K=51 \\
14.2 \sin L & \approx 18 \sin 51^{\circ} & & \text { Cross products } \\
\sin L & \approx \frac{18 \sin 51^{\circ}}{14.2} & & \text { Divide each side by 14.2. } \\
L & \approx \sin ^{-1}\left(\frac{18 \sin 51^{\circ}}{14.2}\right) & & \text { Take the inverse sine of each side. } \\
L & \approx 80^{\circ} & & \text { Use a calculator. }
\end{aligned}
$$

386 Chapter 7 Right Triangles and Trigonometry

D A \| L Y

INIIERVENIION

Differentiated Instruction

ELL
Verbal/Linguistic Have students rewrite the equations for the Law of Cosines in their own words without using variables. Then they can describe scenarios for which the Law of Cosines is the more useful. Finally, they can close their books, draw and label a triangular figure, and try to reproduce the equations for the Law of Cosines by using only their written explanations and descriptions.

Use the Angle Sum Theorem to find $m \angle M$.

$$
\begin{array}{rlrl}
m \angle K+m \angle L+m \angle M & =180 \quad \text { Angle Sum Theorem } \\
51+80+m \angle M & \approx 180 & m \angle K=51 \text { and } m \angle L \approx 80 \\
m \angle M & \approx 49 & & \text { Subtract } 131 \text { from each side. }
\end{array}
$$

Therefore, $k \approx 14.2, m \angle K \approx 80$, and $m \angle M \approx 49$.

Example 4 Use Law of Cosines to Solve Problems

REAL ESTATE Ms. Jenkins is buying some property that is shaped like quadrilateral $A B C D$. Find the perimeter of the property.
Use the Pythagorean Theorem to find $B D$ in $\triangle A B D$.

$$
\begin{aligned}
(A B)^{2}+(A D)^{2} & =(B D)^{2} & & \text { Pythagorean Theorem } \\
180^{2}+240^{2} & =(B D)^{2} & & A B=180, A D=240 \\
90,000 & =(B D)^{2} & & \text { Simplify. } \\
300 & =B D & & \text { Take the square root of each side. }
\end{aligned}
$$

Next, use the Law of Cosines to find $C D$ in $\triangle B C D$.

$$
\begin{aligned}
(C D)^{2} & =(B C)^{2}+(B D)^{2}-2(B C)(B D) \cos \angle C B D & & \text { Law of Cosines } \\
(C D)^{2} & =200^{2}+300^{2}-2(200)(300) \cos 60^{\circ} & & B C=200, B D=300, m \angle C B D=60 \\
(C D)^{2} & =130,000-120,000 \cos 60^{\circ} & & \text { Simplify. } \\
C D & =\sqrt{130,000-120,000 \cos 60^{\circ}} & & \text { Take the square root of each side. } \\
C D & \approx 264.6 & & \text { Use a calculator. }
\end{aligned}
$$

The perimeter of the property is $180+200+264.6+240$ or about 884.6 feet.

Check for Understanding

Concept Check 1. OPEN ENDED Draw and label one acute and one obtuse triangle, illustrating when you can use the Law of Cosines to find the missing measures.
3. If two angles and one side are given, then the Law of Cosines cannot be used.

Guided Practice	
GUIDED PRACTICE KEY	
Exercises	
$4-5$	
$6-7,10$	
$8-9$	

[^1]2. Explain when you should use the Law of Sines or the Law of Cosines to solve a triangle. 1-2. See margin.
3. Find a counterexample for the following statement.

The Law of Cosines can be used to find the length of a missing side in any triangle.

In $\triangle B C D$, given the following measures, find the measure of the missing side.
4. $c=\sqrt{2}, d=5, m \angle B=454.1 \quad$ 5. $b=107, c=94, m \angle D=105159.7$

In $\triangle R S T$, given the lengths of the sides, find the measure of the stated angle to the nearest degree.
6. $r=33, s=65, t=56 ; m \angle S 90 \quad$ 7. $r=2.2, s=1.3, t=1.6 ; m \angle R 98$

Solve each triangle using the given information. Round angle measure to the nearest degree and side measure to the nearest tenth.
8. $\triangle X Y Z: x=5, y=10, z=13$
9. $\begin{aligned} & \triangle K L M: k=20, m=24, m \angle L=47 \\ & \ell \approx 17.9 ; m \angle K \approx 55 ; m \angle M \approx 78 \\ & \text { Lesson 7-7 The Law of Cosines }\end{aligned}$
Lesson 7-7 The Law of Cosines 387

Answers

1. Sample answer: Use the Law of Cosines when you have all three sides given (SSS) or two sides and the included angle (SAS).

2. If you have all three sides (SSS) or two sides and the included angle (SAS) given, then use the Law of Cosines. If two angles and one side (ASA or AAS) or two sides with angle opposite one of the sides (SSA) are given, then use the Law of Sines.

4 AIRCRAFT From the diagram of the plane shown, determine the approximate exterior perimeter of each wing. Round to the nearest tenth meter.

67.1 m

Concept Check

Have students compose a chart in which they include all of the types of triangles they could solve using the Pythagorean Theorem, trigonometric ratios, Law of Sines, and Law of Cosines. They can also include a column listing the formulas and/or ratios and a column for the limitations of each method. Students should recognize that the Pythagorean Theorem is the most limited but the most efficient, and the Law of Cosines is the most diverse but very involved and time-consuming. They may want to form a habit of checking for the most efficient way to solve a problem, keeping all these methods in mind.

Application 10. CRAFTS Jamie, age 25, is creating a logo for herself and two cousins, ages 10 and 5. She is using a quarter (25 cents), a dime (10 cents), and a nickel (5 cents) to represent their ages. She will hold the coins together by soldering a triangular piece of silver wire so that the three vertices of the triangle lie at the centers of the three circular coins. The diameter of the quarter

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for
Chapter 7.
- include an example each for using the Law of Cosines with SAS and with SSS.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..

Organization by Objective

- Solve Triangles: $11-18,38$
- Use the Law of Cosines to Solve Problems: 22-37, 39-41

Odd/Even Assignments

Exercises 11-41 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 11-37 odd, 41, 43-59
Average: 11-43 odd, 44-59
Advanced: 12-44 even, 46-56
(optional: 57-59) is 24 millimeters, the diameter of the nickel is 22 millimeters,
and the diameter of a dime is 10 millimeters. Find the
measures of the three angles in the triangle. $m \angle Q=44.1 ; m \angle D=88.3$; $m \angle N=47.6$

* indicates increased difficulty

Practice and Apply

Honurwark Hell	
For Exercises	See Examples
$11-14$	1
$15-18,38$	2
$22-37$,	3
$39-41$	\vdots
Extra	
Practice	

In $\triangle T U V$, given the following measures, find the measure of the missing side.
11. $t=9.1, v=8.3, m \angle U=32 u \approx 4.9 \quad$ 12. $t=11, u=17, m \angle V=78 \quad \mathrm{~V} \approx 18.2$
13. $u=11, v=17, m \angle T=105 t \approx 22.5 \quad 14 . v=11, u=17, m \angle T=59 \quad t \approx 14.7$

In $\triangle E F G$, given the lengths of the sides, find the measure of the stated angle to the nearest degree.
15. $e=9.1, f=8.3, g=16.7 ; m \angle F 16$
16. $e=14, f=19, g=32 ; m \angle E 12$
17. $e=325, f=198, g=208 ; m \angle F 36$
18. $e=21.9, f=18.9, g=10 ; m \angle G 27$

Solve each triangle using the given information. Round angle measures to the nearest degree and side measures to the nearest tenth. 19-25. See margin.

19
19.

20.

21.

22. $\triangle A B C: m \angle A=42, m \angle C=77, c=6$ 23. $\triangle A B C: a=10.3, b=9.5, m \angle C=37$
24. $\triangle A B C: a=15, b=19, c=28$ 25. $\triangle A B C: m \angle A=53, m \angle C=28, c=14.9$
26. KITES Beth is building a kite like the one at the right. If $\overline{A B}$ is 5 feet long, $\overline{B C}$ is 8 feet long, and $\overline{B D}$ is $7 \frac{2}{3}$ feet long, find the measure of the angle between the short sides and the angle between the long sides to the nearest degree. 100; 57

Solve each $\triangle L M N$ described below. Round measures to the nearest tenth.
27. $m=44, \ell=54, m \angle L=23$
28. $m=18, \ell=24, n=30$
29. $m=19, n=28, m \angle L=49$
30. $m \angle M=46, m \angle L=55, n=16$
32. $m \angle M=55, \ell=6.3, n=6.7$
34. $n=17, m=20, \ell=14$
36. $\ell=14, m=15, n=16$
38. $\ell=10, m=11, n=12$

388 Chapter 7 Right Triangles and Trigonometry
25. $m \angle B=99 ; b \approx 31.3 ; a \approx 25.3$
27. $m \angle M \approx 18.6 ; m \angle N \approx 138.4 ; n \approx 91.8$
28. $m \angle L \approx 53.2 ; m \angle M \approx 36.9 ; m \angle N \approx 89.9$
29. $\ell \approx 21.1 ; m \angle M \approx 42.8 ; m \angle N \approx 88.2$
30. $m \angle N=79 ; \ell \approx 13.4 ; m \approx 11.7$
31. $m \angle L \approx 101.9$; $m \angle M \approx 36.3$;
$m \angle N \approx 41.8$
32. $m \approx 6.0 ; m \angle L \approx 59.3 ; m \angle N \approx 65.7$
33. $m \approx 6.0 ; m \angle L \approx 22.2 ; m \angle N \approx 130.8$
34. $m \angle L \approx 43.5 ; m \angle M \approx 79.5 ; m \angle N \approx 57.0$
35. $m \approx 18.5$; $m \angle L \approx 40.9 ; m \angle N \approx 79.1$
36. $m \angle L \approx 53.6 ; m \angle M \approx 59.6 ; m \angle N \approx 66.8$
37. $m \angle N \approx 42.8 ; m \angle M \approx 86.2 ; m \approx 51.4$
38. $m \angle L \approx 51.3 ; m \angle M \approx 59.1 ; m \angle N \approx 69.6$

388 Chapter 7 Right Triangles and Trigonometry

* 39. In quadrilateral $A B C D, A C=188, B D=214$, $\frac{m \angle B P C}{B D}=70$, and P is the midpoint of $\overline{A C}$ and $\overline{B D}$. Find the perimeter of quadrilateral $A B C D$. 561.2 units
* 40. In quadrilateral $P Q R S, P Q=721, Q R=547$,

More About. $R S=593, P S=756$, and $m \angle P=58$. Find $Q S$, $m \angle P Q S$, and $m \angle R$. $Q S \approx 716.7 ; m \angle P Q S \approx 63.5 ; m \angle R \approx 77.8$

- 41. BUILDINGS Refer to the information at the left. Find the measures of the angles of the triangular building to the nearest tenth. $59.8,63.4,56.8$

42. SOCCER Carlos and Adam are playing soccer. Carlos is standing 40 feet from one post of the goal and 50 feet from the other post. Adam is standing 30 feet from one post of the goal and 22 feet from the other post. If the goal is 24 feet wide, which player has a greater angle to make a shot on goal? Adam; 52.3

Buildings

The Swissôtel in Chicago, Illinois, is built in the shape of a triangular prism. The lengths of the sides of the triangle are 180 feet, 186 feet, and 174 feet. Source: Swissôtel
43. PROOF Justify each statement for the derivation of the Law of Cosines. Given: $\overline{A D}$ is an altitude of $\triangle A B C$.
Prove: $c^{2}=a^{2}+b^{2}-2 a b \cos C$
 Proof:

Statement
a. $c^{2}=(a-x)^{2}+h^{2}$
b. $c^{2}=a^{2}-2 a x+x^{2}+h^{2}$
c. $x^{2}+h^{2}=b^{2}$
d. $c^{2}=a^{2}-2 a x+b^{2}$
e. $\cos C=\frac{x}{b}$
f. $b \cos C=x$
g. $c^{2}=a^{2}-2 a(b \cos C)+b^{2}$
h. $c^{2}=a^{2}+b^{2}-2 a b \cos C$

Reasons
a. ? Pythagorean Theorem
b. ? Substitution
c. ? Pythagorean Theorem
d. ? Substitution
e. ? Def. of cosine
f. ? Cross products
g. ? Substitution
h. ? Commutative Property
44. CRITICAL THINKING Graph $A(-6,-8), B(10,-4), C(6,8)$, and $D(5,11)$ on a coordinate plane. Find the measure of interior angle $A B C$ and the measure of exterior angle $D C A . m \angle A B C \approx 85.6 ; m \angle D C A \approx 124.7$
45. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How are triangles used in building construction?
Include the following in your answer:

- why the building was triangular instead of rectangular, and
- why the Law of Sines could not be used to solve the triangle.
www.geometryonline.com/self_check_quiz
Lesson 7-7 The Law of Cosines 389
Pierre Burnaugh/PhotoEdit

Answers

45. Sample answer: Triangles are used to build supports, walls, and foundations. Answers should include the following.

- The triangular building was more efficient with the cells around the edge.
- The Law of Sines requires two angles and a side or two sides and an angle opposite one of those sides.

Enrichment, p. 392

Spherical Triangles

 arcs, they too can be measured in degrees.

 $\frac{\sin A=\sin b=\sin C}{\sin A} \overline{\sin B} \overline{\sin C}$

Study Guide and Intervention, p. 387 (shown) and p. 388

```
The Law of Cosines Another relationstip betwent the sides and angles of any triangle 
勆 called the Law of Cosines. You can use the Law of Cosinesify youk,
```



```
            Ly.
Example1 In }\triangleABC,\mathrm{ find c.
c}\begin{array}{l}{\mp@subsup{c}{}{2}=\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}-2ab\mathrm{ cos C,}}\\{\mp@subsup{c}{}{2}=1\mp@subsup{2}{}{2}+1\mp@subsup{0}{}{2}-2(12)(10)}
```



```
c=9.1
```



```
Find comen
Mind each measure using the given measures from }\triangleABC\mathrm{ . Rou
1. If }=14,c=12,\mathrm{ and }m\angleA=62,\mathrm{ find }\alpha.13.
2. If }a=11,b=10,\mathrm{ and }c=12\mathrm{ , find m }\B\mathrm{ . 51
.If }a=24,b=18,\mathrm{ and }c=16,\mathrm{ find }m\angleC.4
4. If }a=20,c=25,\mathrm{ and }m\angleB=82\mathrm{ , find b. 29.8
5. If }b=18,c=28,\mathrm{ and }m\angleA=59,\mathrm{ find }a.24.
6. If }a=15,b=19,\mathrm{ and }c=15\mathrm{ , find }m\angleC.
```


Skils Practice, P. 389 and

 Practice, P. 390 (shown)In $\triangle J K L$, given the following measures, find the measure of the missing side.

1. $j=1.3, k=10, m \angle L=77 \ell \approx 9.8$
$2 . j=9.6, \ell=1.7, m \angle K=43 k \approx 8.4$
2. $j=11, k=7, m \angle L=63 \ell \approx 10.0$
3. $k=4.7, \ell=5.2, m \angle J=112 j \approx 8.2$

In $\triangle M N Q$, given the lengths of the sides, find the measure of the stated angle to
the nearest tenth.
5. $m=17, n=23, q=25 ; m \angle Q 75.7$
6. $m=24, n=28, q=34 ; m \angle M 44.2$
7. $m=12.9, n=18, q=20.5 ; m \angle N 60.2$
8. $m=23, n=30.1, q=42 ; m \angle Q 103.7$

Determine whether the Law of Sines or the Law of Cosines should be used first to
solve $\triangle A B C$. Then sole each triangle
solve $\triangle A B C$. Then sole each triangle. Round angle measures to the nearest degre solve $\triangle A B C$. Then sole each triangle. R
and side measure to the nearest tenth.

9. $a=13, b=18, c=19$	10. $a=6, b=19, m \angle C=38$
Cosines; $m \angle \angle \approx 41 ;$	Cosines; $m \angle A \approx 15 ;$
$m \angle B \approx 65 ; m \angle C \approx 74$	$m \angle B \approx 127 ; c \approx 14.7$
11. $a=17, b=22, m \angle B=49$	12. $a=15.5, b=18, m \angle C=72$
Sines; $m \angle A \approx 36 ;$	Cosines; $m \angle A \approx 48 ;$
$m \angle C \approx 95 ; c \approx 29.0$	$m \angle B \approx 60 ; c \approx 19.8$

st tenth
13. $m \angle F=54, f=12.5, g=11 \mathrm{~m} \angle G \approx 45.4, m \angle H \approx 80.6, h \approx 15.2$
14. $f=20, g=23, m \angle H=47 m \angle F \approx 57.4, m \angle G \approx 75.6, h \approx 17.4$ 15. $f=15.8, g=11, h=14 m \angle F \approx 77.4, m \angle G \approx 42.8, m \angle H \approx 59.8$
16. $f=36, h=30, m \angle G=54 m \angle F \approx 73.1, m \angle H \approx 52.9, g \approx 30.4$
17. REAL ESTATE The Esposito family purchased a triangular plot of land on which they plan to build a barn and corral. The lengths of the sides of the plot are 320 feet, 286 feet,
and 305 feet. What are the measures of the angles formed on each side of the property? 65.5, 54.4, 60.1

Reading to Learn

Mathematics, p. 391
ELL
Pre-Activity How are triangles used in building design?
Read the introduction to Lesson 7.7 at the top of page 385 in your textbook What could be a disadvantage of a triangular room? Sample answer:
Furniture will not fit in the corners.

Reading the Lesson

1. Refer to the figure. According to the Law of Cosines, which
statements are correct for $\triangle D E F$? $B, \mathrm{E}, \mathrm{H}$
A. $d^{2}=e^{2}+f^{2}-e f \cos D \quad$ B. $e^{2}=d^{2}+f^{2}-2 d f \cos E$
C. $d^{2}=e^{2}+f^{2}+2 e f \cos D \quad$ D. $f^{2}=d^{2}+e^{2}-2 e f \cos F$
$\begin{array}{ll}\text { E. } f^{2}=d^{2}+e^{2}-2 d e \cos \mathrm{~F} & \text { F. } d^{2}=e^{2}+f^{2} \\ \sin D & \sin E \sin F\end{array}$
$\begin{array}{ll}\text { G. } \frac{\sin D}{d}=\frac{\sin E}{e}=\frac{\sin F}{f} & \text { H. } d=\sqrt{e^{2}+f^{2}-2 e f \cos D}\end{array}$
2. Each of the following describes three given parts of a triangle. In each case, indicate whether you would use the Law of Sines or the Law of Cosines first in solving a triangle
with those given parts. (In some cases, only one of the two laws would be used in solvin with those given parts. (In some cases, only one of the two laws would be used in solvi
the triangle.)
b. ASA Law of Sines
d. SAS Law of Cosines
c. AAS Law of Sines
d. SAS Law of Cosines
e. SSA Law of Sines
3. Indicate whether each statement is true or false. If the
a. The Law of Cosines applies to right triangles. true
b. The Pythagorean Theorem applies tracut
It only applies to right triangles.
c. The Law of Cosines is used to find the third side of a triangle when you are given the
measures of two sides and the nonincluded angle False; sample answer: It is measures of two sides and the nonincluded angle False; sample answer: $1 t$ is
used when you are given the measures of two sides and the included
angle. angle.
d. The Law of Cosines can be used to solve a triangle in which the measures of the three
sides are 5 centimeters, 8 centimeters, and 15 centimeters. False; sample sides are 5 centimeters, 8 centimeters, and 15 centimeters. False; sample
answer: $5+8<15$, so, by the Triangle Inequality Theorem, no su answer: $5+8$
triangle exists.

Helping You Remember
4. A good way to remember new mathematical formula is to relate it to one you already
know. The Law of Cosines looks somewhat like the Pythag orean Theorem. Both formulas
 becomes the Pythagorean Theorem.

4 Assess

Open-Ended Assessment

Writing Select some exercises to reproduce on the board for the class. Have students write the equations necessary to solve for different angles and sides and fill in the values without solving the problems. Volunteers can write their equations on the board.

Assessment Options

Quiz (Lessons 7-7) is available on p. 408 of the Chapter 7
Resource Masters.

Answers

55. Given: $\triangle J F M \sim \triangle E F B$ $\triangle L F M \sim \triangle G F B$
Prove: $\triangle J F L \sim \triangle E F G$

Proof: Since $\triangle J F M \sim \triangle E F B$ and $\Delta L F M \sim \triangle G F B$, then by definition of similar triangles, $\frac{J F}{E F}=\frac{M F}{B F}$ and $\frac{M F}{B F}=\frac{L F}{G F}$. By the Transitive Property of Equality, $\frac{J F}{E F}=\frac{L F}{G F} . \angle F \cong \angle F$ by the Reflexive Property of Congruence. Then, by SAS Similarity, $\triangle J F L \sim \triangle E F G$.
56. Given: $\overline{J M} \| \overline{E B}$

Standardized
Test Practice (A) B C D
46. For $\triangle D E F$, find d to the nearest tenth if $e=12, f=15$, and $m \angle D=75$. B
(A) 18.9
(B) 16.6
(C) 15.4
(D) 9.8
47. ALGEBRA Ms. LaHue earns a monthly base salary of $\$ 1280$ plus a commission of 12.5% of her total monthly sales. At the end of one month, Ms. LaHue earned $\$ 4455$. What were her total sales for the month? C
(A) $\$ 3175$
(B) $\$ 10,240$
(C) $\$ 25,400$
(D) $\$ 35,640$

Maintain Your Skills

Mixed Review Find each measure using the given measures from $\triangle X Y Z$. Round angle measure to the nearest degree and side measure to the nearest tenth. (Lesson 7-6)
48. If $y=4.7, m \angle X=22$, and $m \angle Y=49$, find x. 2.3
49. If $y=10, x=14$, and $m \angle X=50$, find $m \angle Y$. 33
50. SURVEYING A surveyor is 100 meters from a building and finds that the angle of elevation to the top of the building is 23°. If the surveyor's eye level is 1.55 meters above the ground, find the height of the building. (Lesson 7-5) about 44.0 m
For Exercises 51-54, determine whether $\overline{A B} \| \overline{C D}$. (Lesson 6-4)
51. $A C=8.4, B D=6.3, D E=4.5$, and $C E=6$ yes
52. $A C=7, B D=10.5, B E=22.5$, and $A E=15$ yes
53. $A B=8, A E=9, C D=4$, and $C E=4$ no

54. $A B=5.4, B E=18, C D=3$, and $D E=10$ yes

Use the figure at the right to write a paragraph proof. (Lesson 6-3)
55. Given: $\triangle J F M \sim \triangle E F B$

$$
\triangle L F M \sim \triangle G F B
$$

Prove: $\triangle J F L \sim \triangle E F G$ See margin.
56. Given: $\overline{J M} \| \overline{E B}$
$\overline{L M} \| \overline{G B}$

Prove: $\overline{J L} \| \overline{E G}$ See margin.

COORDINATE GEOMETRY The vertices of $\triangle X Y Z$ are $X(8,0), Y(-4,8)$, and $Z(0,12)$. Find the coordinates of the points of concurrency of $\triangle X Y Z$ to the nearest tenth. (Lesson 5-1)
57. orthocenter $(-1.6,9.6) 58$. centroid $(1.3,6.7)$ 59. circumcenter $(2.8,5.2)$

390 Chapter 7 Right Triangles and Trigonometry

Proof: Since $\overline{J M} \| \overline{E B}$ and $\overline{L M} \| \overline{G B}$, then $\angle M J F \cong \angle B E F$ and $\angle F M L \cong \angle F B G$ because if two parallel lines are cut by a transversal, corresponding angles are congruent. $\angle E F B \cong \angle E F B$ and $\angle B F G \cong \angle B F G$ by the Reflexive
Property of Congruence. Then $\triangle E F B \sim \triangle J F M$ and $\triangle F B G \sim \triangle F M L$ by $A A$ Similarity. Then $\frac{J F}{E F}=\frac{M F}{B F}, \frac{M F}{B F}=\frac{L F}{G F}$, by the definition of similar triangles. $\frac{J F}{E F}=\frac{L F}{G F}$ by the Transitive Property of Equality, and $\angle E F G \cong \angle E F G$ by the Reflexive Property of Congruence. Thus, $\triangle J F L \sim \triangle E F G$ by SAS Similarity and $\angle F J L \cong \angle F E G$ by the definition of similar triangles. $\overline{J L} \| \overline{E G}$ because if two lines are cut by a tranversal so that the corresponding angles are congruent, then the lines are parallel.

Trigonometric Identities

In algebra, the equation $2(x+2)=2 x+4$ is called an identity because the equation is true for all values of x. There are equations involving trigonometric ratios that are true for all values of the angle measure. These are called trigonometric identities.
In the figure, $P(x, y)$ is in Quadrant I. The Greek letter theta (pronounced THAY tuh) θ, represents the measure of the angle formed by the x-axis and $\overrightarrow{O P}$. Triangle $P O R$ is a right triangle. Let r represent the length of the hypotenuse. Then the following are true.
$\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r}$
$\tan \theta=\frac{y}{x}$

$\csc \theta=\frac{r}{y}$
$\sec \theta=\frac{r}{x}$
$\cot \theta=\frac{x}{y}$
Notice that $\frac{1}{\sin \theta}=\frac{1}{\frac{y}{r}} \quad \frac{1}{\frac{y}{r}}=1 \div \frac{y}{r} \quad 1 \div \frac{y}{r}=1 \cdot \frac{r}{y}$ or $\frac{r}{y} \quad \frac{r}{y}=\csc \theta$.
So, $\frac{1}{\sin \theta}=\csc \theta$. This is known as one of the reciprocal identities.

Activity

Verify that $\cos ^{2} \theta+\sin ^{2} \theta=1$.
The expression $\cos ^{2} \theta$ means $(\cos \theta)^{2}$. To verify an identity, work on only one side of the equation and use what you know to show how that side is equivalent to the other side.

$$
\begin{array}{rlrl}
\cos ^{2} \theta+\sin ^{2} \theta & \stackrel{?}{=} 1 & & \text { Original equation } \\
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2} & \stackrel{?}{=} 1 & & \text { Substitute. } \\
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}} & \stackrel{?}{=} 1 & & \text { Simplify. } \\
\frac{x^{2}+y^{2}}{r^{2}} & \stackrel{?}{=} 1 & & \text { Combine fractions with like denominators. } \\
\frac{r^{2}}{r^{2}} & \stackrel{?}{=} 1 & & \text { Pythagorean Theorem: } x^{2}+y^{2}=r^{2} \\
1 & =1 \sqrt{l} & \text { Simplify. }
\end{array}
$$

Since $1=1, \cos ^{2} \theta+\sin ^{2} \theta=1$.
Analyze 1-2. See margin.

1. The identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ is known as a Pythagorean identity. Why do you think the word Pythagorean is used to name this?
2. Find two more reciprocal identities involving $\frac{1}{\cos \theta}$ and $\frac{1}{\tan \theta}$.

Verify each identity. 3-6. See p. 399A.
3. $\frac{\sin \theta}{\cos \theta}=\tan \theta$
4. $\cot \theta=\frac{\cos \theta}{\sin \theta}$
5. $\tan ^{2} \theta+1=\sec ^{2} \theta$
6. $\cot ^{2} \theta+1=\csc ^{2} \theta$

A Follow-Up of Lesson 7-7

Getting Started

Trigonometric Identities

Explain to students that this investigation provides them with the tools necessary for deriving trigonometric identities, which they will later use to solve problems and prove theorems.

Teach

- Have students write an equation for the Law of Cosines and substitute the symbols in the figure, using θ as the angle.
- Ask students to set up a proportion with the Law of Sines, using θ and 90° for the angles and then solving for $\sin \theta$.
- Encourage students to become comfortable with verifying the identities, and advise them that these skills will be useful when they are faced with more complex problems and proofs.

Assess

Exercises 1-6 allow students to systematically practice and become more comfortable with finding equivalent trigonometric expressions and verifying trigonometric identities. Some students may need to strengthen their algebra skills before working through these exercises.

Answers

1. Sample answer: It is of the form $a^{2}+b^{2}=c^{2}$, where $c=1$.
2. $\frac{1}{\cos \theta}=\sec \theta ; \frac{1}{\tan \theta}=\cot \theta$
chapter
7 Study Guide and Review

Vocabulary and Concept Check

- This alphabetical list of vocabulary terms in Chapter 7 includes a page reference where each term was introduced.
- Assessment A vocabulary test/review for Chapter 7 is available on p .406 of the Chapter 7 Resource Masters.

Lesson-by-Lesson Review

For each lesson,

- the main ideas are summarized,
- additional examples review concepts, and
- practice exercises are provided.

Vocabulary PuzzleMaker

ELL The Vocabulary PuzzleMaker software improves students' mathematics vocabulary using four puzzle formatscrossword, scramble, word search using a word list, and word search using clues. Students can work on a computer screen or from a printed handout.

MindJogger Videoquizzes

MindJogger Videoquizzes provide an alternative review of concepts presented in this chapter. Students work in teams in a game show format to gain points for correct answers. The questions are presented in three rounds.
Round 1 Concepts (5 questions)
Round 2 Skills (4 questions)
Round 3 Problem Solving (4 questions)

Vocabulary and Concept Check

ambiguous case (p. 384) angle of depression (p. 372) angle of elevation (p. 371) cosine (p. 364)
geometric mean (p. 342)
Law of Cosines (p. 385)
Law of Sines (p. 377)
Pythagorean identity (p. 391)

Pythagorean triple (p. 352) reciprocal identities (p. 391) sine (p. 364)
solving a triangle (p. 378)
tangent (p. 364)
trigonometric identity (p. 391)
trigonometric ratio (p. 364) trigonometry (p. 364)

A complete list of postulates and theorems can be found on pages R1-R8.

Exercises State whether each statement is true or false. If false, replace the underlined word or words to make a true sentence.

1. The Law of Sines can be applied if you know the measures of two sides and an angle opposite one of these sides of the triangle. true
2. The tangent of $\angle A$ is the measure of the leg adjacent to $\angle A$ divided by the measure of the leg opposite $\angle A$. false; opposite; adjacent
3. In any triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse. false; a right
4. An angle of elevation is the angle between the line of sight and the horizontal when an observer looks upward. true
5. The geometric mean between two numbers is the positive square root of their product. true
6. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, two of the sides will have the same length. false; $45^{\circ}-45^{\circ}-90^{\circ}$
7. Looking at a city while flying in a plane is an example that uses angle of elevation. false; depression

Lesson-by-Lesson Review

7-1 Geometric Mean

See pages Concept Summary

342-348.

- The geometric mean of two numbers is the square root of their product.
- You can use the geometric mean to find the altitude of a right triangle.

Examples 1 Find the geometric mean between 10 and 30. $\frac{10}{x}=\frac{x}{30} \quad$ Definition of geometric mean $x^{2}=300$ Cross products $x=\sqrt{300}$ or $10 \sqrt{3}$ Take the square root of each side.
2 Find $N G$ in $\triangle T G R$.
The measure of the altitude is the geometric mean between the measures of the two hypotenuse segments.

$$
\begin{aligned}
\frac{T N}{G N} & =\frac{G N}{R N} & & \text { Definition of geometric mean } \\
\frac{2}{G N} & =\frac{G N}{4} & & T N=2, R N=4 \\
8 & =(G N)^{2} & & \text { Cross products } \\
\sqrt{8} \text { or } 2 \sqrt{2} & =G N \quad & & \text { Take the square root of each side. }
\end{aligned}
$$

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Have students look through the chapter to make sure they have included notes and examples in their Foldables for each lesson of Chapter 7.
Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Exercises Find the geometric mean between each pair of numbers.
See Example 1 on page 342.
$10 \sqrt{7} \approx 26.5$
$6 \sqrt{22} \approx 28.1$
8. 4 and 168
9. 4 and 8118
10. 20 and 35
11. 18 and 44
12. In $\triangle P Q R, P S=8$, and $Q S=14$. Find $R S$. See Example 2 on page 344. $4 \sqrt{7} \approx 10.6$

7-2 The Pythagorean Theorem and Its Converse

See pages 350-356.

Concept Summary

- The Pythagorean Theorem can be used to find the measures of the sides of a right triangle.
- If the measures of the sides of a triangle form a Pythagorean triple, then the triangle is a right triangle.

Example

Find k.

$$
\begin{aligned}
a^{2}+(L K)^{2} & =(J L)^{2} & & \text { Pythagorean Theorem } \\
a^{2}+8^{2} & =13^{2} & & L K=8 \text { and } J L=13 \\
a^{2}+64 & =169 & & \text { Simplify. } \\
a^{2} & =105 & & \text { Subtract } 64 \text { from each side. } \\
a & =\sqrt{105} & & \text { Take the square root of each side. } \\
a & \approx 10.2 & & \text { Use a calculator. }
\end{aligned}
$$

Exercises Find x. See Example 2 on page 351.
13.

14. $\frac{12}{17}$

15.

7-3 Special Right Triangles

Concept Summary

- The measure of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times the length of the legs of the triangle. The measures of the sides are x, x, and $x \sqrt{2}$.
- In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the measures of the sides are $x, x \sqrt{3}$, and $2 x$.

1 Find x.

The measure of the shorter leg $\overline{X Z}$ of $\triangle X Y Z$ is half the measure of the hypotenuse $\overline{X Y}$. Therefore, $X Z=\frac{1}{2}(26)$ or 13 . The measure of the longer leg is $\sqrt{3}$ times the measure of the shorter leg. So, $x=13 \sqrt{3}$.

Answers

21. $\frac{3}{5}=0.60 ; \frac{4}{5}=0.80 ; \frac{3}{4}=0.75$;
$\frac{4}{5}=0.80 ; \frac{3}{5}=0.60 ; \frac{4}{3} \approx 1.33$
22. $\frac{7}{25}=0.28 ; \frac{24}{25}=0.96 ; \frac{7}{24} \approx 0.29$;
$\frac{24}{25}=0.96 ; \frac{7}{25}=0.28 ; \frac{24}{7} \approx 3.43$

Chapter 7 Study Guide and Review

2 Find x.
The measure of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times the length of a leg of the triangle.

$$
\begin{aligned}
x \sqrt{2} & =4 \\
x & =\frac{4}{\sqrt{2}} \\
x & =\frac{4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \text { or } 2 \sqrt{2}
\end{aligned}
$$

Exercises Find x and y. See Examples 1 and 3 on pages 358 and 359
16.

For Exercises 19 and 20, use the figure at the right.
See Example 3 on page 359.
19. If $y=18$, find z and $a . z=18 \sqrt{3}, a=36 \sqrt{3}$
20. If $x=14$, find a, z, b, and y.

$$
a=\frac{28 \sqrt{3}}{3}, z=\frac{14 \sqrt{3}}{3}, b=\frac{28}{3}, y=\frac{14}{3}
$$

7-4 Trigonometry

Concept Summary

- Trigonometric ratios can be used to find measures in right triangles.

Example
Find $\sin A, \cos A$, and $\tan A$. Express each ratio as a fraction and as a decimal.

$$
\begin{aligned}
\sin A & =\frac{\text { opposite leg }}{\text { hypotenuse }} & \cos A & =\frac{\text { adjacent leg }}{\text { hypotenuse }} \\
& =\frac{B C}{A B} & =\frac{A C}{A B} & \tan A
\end{aligned}=\frac{\text { opposite leg }}{\text { adjacent leg }}
$$

Exercises Use $\triangle F G H$ to find $\sin F, \cos F, \tan F, \sin G, \cos G$, and $\tan G$. Express each ratio as a fraction and as a decimal to the nearest hundredth. See Example 1 on page 365.
21. $a=9, b=12, c=15$
22. $a=7, b=24, c=25$
21-22. See margin.

Find the measure of each angle to the nearest tenth of a degree.
See Example 4 on pages 366 and 367.
23. $\sin P=0.452226 .9$
24. $\cos Q=0.167380 .4$
25. $\tan R=0.9324$
43.0

7-5 Angles of Elevation and Depression

See pages

 371-376.
Concept Summary

- Trigonometry can be used to solve problems related to angles of elevation and depression.

A store has a ramp near its front entrance. The ramp measures 12 feet, and has a height of 3 feet. What is the angle of elevation? Make a drawing.

Let x represent $m \angle B A C$.

$$
\begin{aligned}
\sin x^{\circ} & =\frac{B C}{A B} & & \sin x=\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin x^{\circ} & =\frac{3}{12} & & B C=3 \text { and } A B=12 \\
x & =\sin ^{-1}\left(\frac{3}{12}\right) & & \text { Find the inverse. } \\
x & \approx 14.5 & & \text { Use a calculator. }
\end{aligned}
$$

The angle of elevation for the ramp is about 14.5°.
Exercises Determine the angles of elevation or depression in each situation.
See Examples 1 and 2 on pages 371 and 372.
26. An airplane must clear a 60 -foot pole at the end of a runway 500 yards long. $\approx 2.3^{\circ}$
27. An escalator descends 100 feet for each horizontal distance of 240 feet. $\approx 22.6^{\circ}$
28. A hot-air balloon descends 50 feet for every 1000 feet traveled horizontally. $\approx 2.9^{\circ}$
29. DAYLIGHT At a certain time of the day, the angle of elevation of the sun is 44°. Find the length of a shadow cast by a building that is 30 yards high. $\approx 31.1 \mathrm{yd}$
30. RAILROADS A railroad track rises 30 feet for every 400 feet of track. What is the measure of the angle of elevation of the track? $\approx 4.3^{\circ}$

7-6 The Law of Sines

Concept Summary

- To find the measures of a triangle by using the Law of Sines, you must either know the measures of two angles and any side (AAS or ASA), or two sides and an angle opposite one of these sides (SSA) of the triangle.
- To solve a triangle means to find the measures of all sides and angles.

Example

Solve $\triangle X Y Z$ if $m \angle X=32, m \angle Y=61$, and $y=15$. Round angle measures to the nearest degree and side measures to the nearest tenth.
Find the measure of $\angle Z$.

$$
\begin{array}{rlrl}
m \angle X+m \angle Y+m \angle Z & =180 \quad \text { Angle Sum Theorem } \\
32+61+m \angle Z & =180 & m \angle X=32 \text { and } m \angle Y=61 \\
93+m \angle Z & =180 & \text { Add. } \\
m \angle Z & =87 & \text { Subtract } 93 \text { from each side. }
\end{array}
$$

Chapter 7 Study Guide and Review 395

Answers

33. $m \angle B \approx 41, m \angle C \approx 75, c \approx 16.1$
34. $m \angle B=58, b \approx 11.1, a \approx 10.7$
35. $m \angle B \approx 61, m \angle C \approx 90, c \approx 9.9$
36. $m \angle C=87, a \approx 10.0, c \approx 20.6$
37. $a \approx 17.0, m \angle B \approx 43, m \angle C \approx 73$
38. $m \angle B \approx 38, m \angle A \approx 89, a \approx 8.4$

Since we know $m \angle Y$ and y, use proportions involving $\sin Y$ and y.

To find x		To find $z:$	
$\frac{\sin Y}{y}$	$=\frac{\sin X}{x}$		Law of Sines
$\frac{\sin 61^{\circ}}{15}$	$=\frac{\sin 32^{\circ}}{x}$		$\frac{\sin Y}{y}$ $=\frac{\sin Z}{z}$ $x \sin 61^{\circ}$ $=15 \sin 32^{\circ}$ x $=\frac{15 \sin 32^{\circ}}{\sin 61^{\circ}}$
	Substitute.	Cross products	Divide.

Exercises Find each measure using the given measures of $\triangle F G H$. Round angle measures to the nearest degree and side measures to the nearest tenth. See Example 1 on page 378.
31. Find f if $g=16, m \angle G=48$, and $m \angle F=82$. 21.3
32. Find $m \angle H$ if $h=10.5, g=13$, and $m \angle G=65$. 47

Solve each $\triangle A B C$ described below. Round angle measures to the nearest degree and side measures to the nearest tenth. See Example 2 on pages 378 and 379
33. $a=15, b=11, m \angle A=64$
34. $c=12, m \angle C=67, m \angle A=55$
35. $m \angle A=29, a=4.8, b=8.7$
36. $m \angle A=29, m \angle B=64, b=18.5$

33-36. See margin.

7-7 The Law of Cosines

see pages

Concept Summary
385-390.

- The Law of Cosines can be used to solve triangles when you know the measures of two sides and the included angle (SAS) or the measures of the three sides (SSS).

Example Find a if $b=23, c=19$, and $m \angle A=54$.

Since the measures of two sides and the included angle are known, use the Law of Cosines.
$a^{2}=b+c^{2}-2 b c \cos A$
$a^{2}=23^{2}+19^{2}-2(23)(19) \cos 54^{\circ}$
$a=\sqrt{23^{2}+19^{2}-2(23)(19) \cos 54^{\circ}}$
$a \approx 19.4$

Law of Cosines
$b=23, c=19$, and $m \angle A=54$
Take the square root of each side.
Use a calculator.

Exercises In $\triangle X Y Z$, given the following measures, find the measure of the missing side. See Example 1 on page 385.
37. $x=7.6, y=5.4, m \angle Z=51 \quad Z \approx 5.9$
38. $x=21, m \angle Y=73, z=16 \boldsymbol{y} \approx 22.4$

Solve each triangle using the given information. Round angle measure to the nearest degree and side measure to the nearest tenth.
See Example 3 on pages 386 and 387. 39-40. See margin.
39. $c=18, b=13, m \angle A=64$
40. $b=5.2, m \angle C=53, c=6.7$

396 Chapter 7 Right Triangles and Trigonometry

Answers (page 397)

2. Yes; two perfect squares can be written as $\boldsymbol{a} \cdot \boldsymbol{a}$ and $\boldsymbol{b} \cdot \boldsymbol{b}$. Multiplied together, we have $\boldsymbol{a} \cdot \boldsymbol{a} \cdot \boldsymbol{b} \cdot \boldsymbol{b}$. Taking the square root, we have $a b$, which is rational.
3. $m \angle A \approx 59, m \angle B \approx 76, c \approx 12.4$
4. $m \angle A \approx 56, m \angle C \approx 76, c \approx 14.2$
5. $m \angle A \approx 51, m \angle B \approx 72, m \angle C \approx 57$

7 Practice Test

Vocabulary and Concepts

1. State the Law of Cosines for $\triangle A B C$ used to find $m \angle C . c^{2}=a^{2}+b^{2}-2 a b \cos C$
2. Determine whether the geometric mean of two perfect squares will always be rational. Explain.
3. Give an example of side measures of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. Sample answer: $2,2 \sqrt{3}, 4 \quad$ 2. See margin.

Skills and Applications

Find the geometric mean between each pair of numbers.
4. 7 and 6321
5. 6 and 2412
6. 10 and $5010 \sqrt{5}$
Find the missing measures.
7.

9.

10.

Use the figure to find each trigonometric ratio. Express answers as a fraction.
13. $\cos B \frac{5}{7}$
14. $\tan A \frac{15}{16}$
15. $\sin A \frac{5}{7}$
Find each measure using the given measures from $\triangle F G H$.
Round to the nearest tenth.
16. Find g if $m \angle F=59, f=13$, and $m \angle G=71$. 14.3
17. Find $m \angle H$ if $m \angle F=52, f=10$, and $h=12.5$. 80.1
18. Find f if $g=15, h=13$, and $m \angle F=48$. 11.5
19. Find h if $f=13.7, g=16.8$, and $m \angle H=71$. 17.9

Solve each triangle. Round each angle measure to the nearest degree and each side measure to the nearest tenth. 20-22. See margin.
20. $a=15, b=17, m \angle C=45$
21. $a=12.2, b=10.9, m \angle B=48$
22. $a=19, b=23.2, c=21$
23. TRAVEL From an airplane, Janara looked down to see a city. If she
looked down at an angle of 9° and the airplane was half a mile above the ground, what was the horizontal distance to the city? 3.2 mi
24. CIVIL ENGINEERING A section of freeway has a steady incline of 10°. If the horizontal distance from the beginning of the incline to the end is 5 miles, how high does the incline reach? 0.9 mi
25. STANDARDIZED TEST PRACTICE Find $\tan X$. D
(A) $\frac{5}{12}$
(B) $\frac{12}{13}$
(C) $\frac{17}{12}$
(D) $\frac{12}{5}$

wwww.geometryonline.com/chapter_test
Chapter 7 Practice Test 397

Portfolio Suggestion

Introduction After working through a chapter of very detailed material, it can help to determine strengths and weaknesses.
Ask Students List all the methods and formulas for solving triangles that you learned about in this chapter. Select a favorite method to write about and explain why you are most comfortable with this particular method. Write about your least favorite method and include possible ideas and activities to help you master it. Place this in your portfolio.

Assessment Options
Vocabulary Test A vocabulary test/review for Chapter 7 can be found on p. 406 of the Chapter 7 Resource Masters.

Chapter Tests There are six Chapter 7 Tests and an OpenEnded Assessment task available in the Chapter 7 Resource Masters.

Chapter 7 Tests			
Form	Type	Level	Pages
1	MC	basic	$393-394$
2A	MC	average	$395-396$
2B	MC	average	$397-398$
2C	FR	average	$399-400$
2D	FR	average	$401-402$
3	FR	advanced	$403-404$
MC $=$ multiple-choice questions FR $=$ free-response questions			

Open-Ended Assessment
Performance tasks for Chapter 7 can be found on p. 405 of the Chapter 7 Resource Masters. A sample scoring rubric for these tasks appears on p. A28.

Unit 2 Test A unit test/review can be found on pp. 413-414 of the Chapter 7 Resource Masters.
First Semester Test A test for Chapters 1-7 can be found on pp. 415-416 of the Chapter 7 Resource Masters.

ExamView ${ }^{\circledR}$ Pro

Use the networkable
ExamView ${ }^{\bullet}$ Pro to:

- Create multiple versions of tests.
- Create modified tests for Inclusion students.
- Edit existing questions and add your own questions.
- Use built-in state curriculum correlations to create tests aligned with state standards.
- Apply art to your tests from a program bank of artwork. Test Practice

These two pages contain practice questions in the various formats that can be found on the most frequently given standardized tests.

A practice answer sheet for these two pages can be found on p. A1 of the Chapter 7 Resource Masters.

Standardized Test Practice Student Recording Sheet, p. A1

Record your answers for Question 13 on the back of this paper.

Additional Practice

See pp. 411-412 in the Chapter 7 Resource Masters for additional standardized test practice.

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. If $\angle 4$ and $\angle 3$ are supplementary, which reason could you use as the first step in proving that $\angle 1$ and $\angle 2$ are supplementary? (Lesson 2-7) C

(A) Definition of similar angles
(B) Definition of perpendicular lines
(C) Definition of a vertical angle
(D) Division Property
2. In $\triangle A B C, \overline{B D}$ is a median. If $A D=3 x+5$ and $C D=5 x-1$, find $A C$. (Lesson 5-1) D

(A) 3
(B) 11
(C) 14
(D) 28
3. If pentagons $A B C D E$ and $P Q R S T$ are similar, find $S R$. (Lesson 6-2) B

(A) $14 \frac{2}{3}$
(B) $4 \frac{4}{11}$
(C) 3
(D) $1 \frac{5}{6}$
4. In $\triangle A B C, \overline{C D}$ is an altitude and $m \angle A C B=90^{\circ}$. If $A D=12$ and $B D=3$, find $A C$ to the nearest tenth. (Lesson 7-1) C

(A) 6.5
(B) 9.0
(C) 13.4
(D) 15.0
5. What is the length of $\overline{R T}$? (Lesson 7-3) \mathbf{B}

(A) 5 cm
(B) $5 \sqrt{2} \mathrm{~cm}$
(C) $5 \sqrt{3} \mathrm{~cm}$
(D) 10 cm
6. An earthquake damaged a communication tower. As a result, the top of the tower broke off at a point 60 feet above the base. If the fallen portion of the tower made a 36° angle with the ground, what was the approximate height of the original tower? (Lesson 7-4) D

(A) 35 ft
(B) 95 ft
(C) 102 ft
(D) 162 ft
7. Miraku drew a map showing Regina's house, Steve's apartment, and Trina's workplace. The three locations formed $\triangle R S T$, where $m \angle R=34, r=14$, and $s=21$. Which could be $m \angle S$? (Lesson 7-6) C
(A) 15
(B) 22
(C) 57
(D) 84

ExamView ${ }^{\otimes}$ Pro

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and state proficiency tests can be found on this CD-ROM.

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.
8. Find $m \angle A B C$
if $m \angle C D A=61$.
(Lesson 1-6) 140

For Questions 9 and 10, refer to the graph.

9. At the International Science Fair, a Canadian student recorded temperatures in degrees Celsius. A student from the United States recorded the same temperatures in degrees Fahrenheit. They used their data to plot a graph of Celsius versus Fahrenheit. What is the slope of their graph? (Lesson 3-3) 9/5
10. Students used the equation of the line for the temperature graph of Celsius versus Fahrenheit to convert degrees Celsius to degrees Fahrenheit. If the line goes through points $(0,32)$ and $(10,50)$, what equation can the students use to convert degrees Celsius to degrees Fahrenheit? (Lesson 3-4)

$$
y=\frac{9}{5} x+32
$$

11. $\triangle T U V$ and $\triangle X Y Z$ are similar. Calculate the ratio $\frac{Y Z}{U V}$. (Lesson 6-3) $3 / 5$

www.geometryonline.com/standardized_test

Part 3 Extended Response

Record your answers on a sheet of paper. Show your work.
13. Toby, Rani, and Sasha are practicing for a double Dutch rope-jumping tournament. Toby and Rani are standing at points T and R and are turning the ropes. Sasha is standing at S, equidistant from both Toby and Rani. Sasha will jump into the middle of the turning rope to point X. Prove that when Sasha jumps into the rope, she will be at the midpoint between Toby and Rani. (Lessons 4-5 and 4-6) See margin.

Chapter 7 Standardized Test Practice

Answers

13. Since Sasha is equidistant from Toby and Rani, $\overline{S T}$ and $\overline{S R}$ are congruent and $\triangle S T R$ is an isosceles triangle. According to the Isosceles Triangle Theorem, $\angle T$ and $\angle R$ are also congruent. $\overline{S X}$ is perpendicular to $\overline{T R}$, so $\angle S X T$ and $\angle S X R$ are both right angles and congruent. Two corresponding angles and the corresponding nonincluded
sides are congruent (AAS Theorem), so $\triangle S T X$ and $\triangle S R X$ are congruent triangles. Since these triangles are congruent, the corresponding sides $\overline{T X}$ and $\overline{R X}$ are congruent and have equal length; therefore when Sasha is jumping at Point X she will be at the midpoint between Toby and Rani.

Evaluating Extended Response Questions

Extended Response questions are graded by using a multilevel rubric that guides you in assessing a student's knowledge of a particular concept.
Goal: Prove that a point is a midpoint.
Sample Scoring Rubric: The following rubric is a sample scoring device. You may wish to add more detail to this sample to meet your individual scoring needs.

Score	Criteria
4	A correct solution that is supported by well-developed, accurate explanations
3	A generally correct solution, but may contain minor flaws in reasoning or computation
2	A partially correct interpretation and/or solution to the problem
1	A correct solution with no supporting evidence or explanation
0	An incorrect solution indicating no mathematical understanding of the concept or task, or no solution is given

Pages 345-348, Lesson 7-1

45. Given: $\angle P Q R$ is a right angle. $Q S$ is an altitude of $\triangle P Q R$.

Prove: $\triangle P S Q \sim \triangle P Q R$ $\triangle P Q R \sim \triangle Q S R$
 $\triangle P S Q \sim \triangle Q S R$

Proof:

Statements (Reasons)

1. $\angle P Q R$ is a right angle; $\overline{Q S}$ is an altitude of $\triangle P Q R$. (Given)
2. $\overline{Q S} \perp \overline{R P}$ (Definition of altitude)
3. $\angle 1$ and $\angle 2$ are right angles. (Definition of \perp lines)
4. $\angle 1 \cong \angle P Q R ; \angle 2 \cong \angle P Q R$ (All right $\angle \mathrm{s}$ are \cong.)
5. $\angle P \cong \angle P ; \angle R \cong \angle R$ (Congruence of $\angle \mathrm{s}$ is reflexive.)
6. $\triangle P S Q \sim \triangle P Q R ; \triangle P Q R \sim \triangle Q S R$ (AA Similarity; Statements 4 and 5)
7. $\triangle P S Q \sim \triangle Q S R$ (Similarity of triangles is transitive.)
8. Given: $\angle A D C$ is a right angle. $\overline{D B}$ is an altitude of $\triangle A D C$.

Prove: $\frac{A B}{D B}=\frac{D B}{C B}$
Proof: It is given that $\angle A D C$ is a right angle and $\overline{D B}$ is an altitude of $\triangle A D C . \triangle A D C$ is a right triangle by the definition of a right triangle. Therefore, $\triangle A D B \sim \triangle D C B$, because if the altitude is drawn from the vertex of the right angle to the hypotenuse of a right triangle, then the two triangles formed are similar to the given triangle and to each other. So $\frac{A B}{D B}=\frac{D B}{C B}$ by definition of similar polygons.
47. Given: $\angle A D C$ is a right angle. $\overline{D B}$ is an altitude of $\triangle A D C$.
Prove: $\frac{A B}{A D}=\frac{A D}{A C} ; \frac{B C}{D C}=\frac{D C}{A C}$

Proof:
Statements (Reasons)

1. $\angle A D C$ is a right angle; $\overline{D B}$ is an altitude of $\triangle A D C$. (Given)
2. $\triangle A D C$ is a right triangle. (Definition of right triangle)
3. $\triangle A B D \sim \triangle A D C ; \triangle D B C \sim \triangle A D C$ (If the altitude is drawn from the vertex of the rt. \angle to the hypotenuse of a rt. Δ, then the 2Δ s formed are similar to the given \triangle and to each other.)
4. $\frac{A B}{A D}=\frac{A D}{A C} ; \frac{B C}{D C}=\frac{D C}{A C}$ (Definition of similar polygons)

Pages 360-363, Lesson 7-3
9.

10.

Page 391, Geometry Activity
3. $\frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \tan \theta$
$\frac{\frac{y}{r}}{\frac{x}{r}} \stackrel{?}{=} \frac{y}{x}$
$\frac{y}{r} \cdot \frac{r}{x} \stackrel{?}{=} \frac{y}{x}$
$\frac{y}{x}=\frac{y}{x} \sqrt{ }$
Original equation
$\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \tan \theta=\frac{y}{x}$
Multiply by the reciprocal of $\frac{X}{r}$.
Multiply.
4. $\frac{\cos \theta}{\sin \theta} \stackrel{?}{=} \cot \theta$

$$
\begin{aligned}
\frac{x}{r} & \stackrel{?}{y} \frac{x}{y} \\
\frac{x}{r} \cdot \frac{r}{y} & \stackrel{?}{=} \frac{x}{y} \\
\frac{x}{y} & =\frac{x}{y} \sqrt{ }
\end{aligned}
$$

5. $\tan ^{2} \theta+1 \stackrel{?}{\underline{?}} \sec ^{2} \theta$

$$
\begin{aligned}
\left(\frac{y}{x}\right)^{2}+1 & \stackrel{?}{=}\left(\frac{r}{x}\right)^{2} \\
\frac{y^{2}}{x^{2}}+1 & \stackrel{?}{=} \frac{r^{2}}{x^{2}} \\
x^{2}\left(\frac{y^{2}}{x^{2}}+1\right) & \stackrel{?}{=} x^{2} \cdot \frac{r^{2}}{x^{2}} \\
y^{2}+x^{2} & \stackrel{?}{=} r^{2} \\
r^{2} & =r^{2} \sqrt{ }
\end{aligned}
$$

6. $\cot ^{2} \theta+1 \stackrel{?}{\underline{?}} \csc ^{2} \theta$

$$
\left(\frac{x}{y}\right)^{2}+1 \stackrel{?}{=}\left(\frac{r}{y}\right)^{2}
$$

$$
\begin{aligned}
\frac{x^{2}}{y^{2}}+1 & \stackrel{?}{=} \frac{r^{2}}{y^{2}} \\
y^{2}\left(\frac{x^{2}}{y^{2}}+1\right) & \stackrel{?}{=} y^{2} \cdot \frac{r^{2}}{y^{2}} \\
x^{2}+y^{2} & \stackrel{?}{=} r^{2}
\end{aligned}
$$

$$
r^{2}=r^{2} \sqrt{ }
$$

Original equation
$\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \cot \theta=\frac{x}{y}$
Multiply by the reciprocal of $\frac{y}{x}$.
Multiply.
Original equation
$\tan \theta=\frac{y}{x}, \sec \theta=\frac{r}{x}$
Evaluate exponents.
Multiply each side by x^{2}.
Simplify.
Substitution; $y^{2}+x^{2}=r^{2}$
Original equation
$\cot \theta=\frac{x}{y}, \sec \theta=\frac{r}{y}$
Evaluate exponents.
Multiply each side by y^{2}.
Simplify.
Substitution; $x^{2}+y^{2}=r^{2}$

Notes

[^0]: *Key to Abbreviations: GCC = Graphing Calculator and Computer Masters
 SC = School-to-Career Masters

[^1]: 8. $m \angle X \approx 20$;
 $m \angle Y \approx 43$;
 $m \angle Z \approx 117$
